Effects of Endocrine Disruptors/Modulators on Fishes

Vicki S. Blazer and Luke Iwanowicz National Fish Health Research Laboratory Leetown Science Center Kearneysville, WV

Fish and Endocrine Disruptors/Modulators

- Fish are good indicators for the aquatic environment
- Fish health and fish populations
 - Commercially and recreationally-important species
 - Ecologically important species
- Indicators of effects on aquatic ecosystem and ultimately human health

Endocrine System of Vertebrates

Complex system primarily involved in chemical communication

- Hormones are released from glands and affect target tissues
 - Travel through the bloodstream
 - >Act locally

Endocrine Modulators

Synthetic or naturally-occurring chemicals that modify or disrupt normal hormonal functions

Alterations in synthesis and metabolism

Improper balance or quantity of circulating hormones

Directly or indirectly interact with natural hormones

Change hormone message and alter cell activity

Induce creation of extra receptor sites

Amplify the hormone effect on cell activity

Block binding sites

Impair normal cell activity

Bind to receptors (hormone mimics)

Abnormal, unpredictable cell activity

Endocrine Disruption

Reproductive
Thyroid
Adrenal (Interrenal, chromaffin)
Neuroendocrine

Immune system/disease resistance

 Cortisol
 Estrogens/androgens

2002 Sampling With WV DNR South Branch Potomac

- randomly examined a variety of fish species focusing on the external lesions
 - Variety of causes bacterial, parasitic, noninfectious
 - Suggested some environmental stressors that may cause immunosuppression and increased disease susceptibility

Sampling In South Branch Potomac (WV DNR)

2003 – more intensive sampling – 7 sites in the South Branch, 1 in Cacapon, 1 in Lost River, 1 in North River drainages

- Necropsy-based assessment, pieces of liver, kidney, spleen, gonad and skin lesions
- Histologic evaluation of all the organs
- Finding of intersex

Fish Lesions/Fish Kills Smallmouth Bass and Other Species

Potomac River – WV, MD

Shenandoah River – VA, WV
 Susquehanna River – PA
 Skin lesions are associated with a number of opportunistic bacterial pathogens

Internal Lesions - Parasites

Spleen from bass in North River

Spleen from bass at Indian Rock

ERα in Brown Bullhead Leukocytes

Effects of Estrogen on Brown Bullhead Leukocytes

Estrogen exposure reduces phagocytic index
Estrogen influences bactericidal activity
Estrogen influences nitric oxide production
Estrogen influences respiratory burst activity

Indicators of Endocrine Modulation in Fishes

Morphological changes Secondary sex characteristics, altered growth, altered organosomatic indices Circulating hormone levels Testosterone, estrogen, thyroxine (T_3, T_4) , cortisol Molecular changes – mRNA, estrogen receptors Microscopic (histologic) changes

Difficulties in Assessing Endocrine Disruption in Fish

- Endocrine organs tend to be diffuse tissues rather than discrete organs
 - Interrenal (adrenal cortex) and chromaffin (adrenal medulla) dispersed throughout anterior kidney
 - Thyroid follicles around vessels gill arch

Ectopic Thyroid in Kidney of Carp Rio Grande BEST Project

Endocrine Changes - Interrenal Tissue Paddlefish Study

Endocrine Changes - Chromaffin Tissue Paddlefish Study

Bioindicators of Reproductive Endocrine Disruption

Morphological Changes Secondary sexual characteristics Gonad size (gonadal somatic index) Circulating Hormone Levels Estrogen > Testosterone > E/T ratios Circulating Vitellogenin Histologic Indicators

Difficulties in Assessing Endocrine Disruption in Fishes

Many factors influence hormone levels

Sexual maturity, age
 Climatic/Environmental factors – water temperature, photoperiod

🚧 Diet

Environmental factors - water quality
 Time of year/day of collection

Histopathologic Endpoints Reproductive Studies

Developmental stage of the gonad

- Females stages 0 to 5
- Males stages 1 to 4
- Percent atresia
- Sertoli cell proliferation
- Gonadal tumors
- Ceroid/lipofuscin (pigmented cell accumulations)

Intersex

Gonadal Stages - Female

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Lake Michigan Yellow Perch

 Overall decline of the yellow perch population noted since 1994

- Series of weak year classes since 1991
 - limited recruitment to the adult population
- Shift in age-class structure
 - lack of young fish

Comparison of Yellow Perch Females Year Class 90 Winter 1996 Collection

Testicular Tumors (Seminoma) Lake Michigan Yellow Perch

<u>Prevalence</u>
31%
27%
25%

Perch Testicular Neoplasia Seminoma

Diffuse sheets of large cells with abundant clear cytoplasm, distinct cell membranes, and round nuclei with 1 or 2 nucleoli, intersected by thin bands of fibrovascular connective tissue. Mitotic figures are common.

Human Testicular Cancer

- Rates of testicular cancer have increased sharply in the past three decades in many countries (US, England, Denmarck, Canada)
- Particularly those affecting younger men- the seminomas
- In Ontario the cancer rate is up nearly 60% from 1964
 - Rising 2.4% a yr for 15-29 year olds
 - Rising 1.5% a yr for 30-44 year olds

Canadian Medical Association Journal

Intersex in Fish

Increasingly there are reports of individual wild fish with intersex or ovotestis

- Most involve female germ cells or immature oocytes within a predominantly male gonad
- Other reports include malformed/intersex reproductive ducts; large areas of ovarian tissue

Intersex in Normally Gonochorist Fishes

 Immature oocytes within testes
 Suggested as a marker of endocrine disruption
 Used as an indicator

of exposure to estrogenic compounds

Intersex South Branch Potomac

Site #	Summer 2003 % Intersex (# of males)	Spring 2004 % Intersex (# of males)	Summer 2004 % Intersex (# of males)	
1	33.3% (6)	100% (7)	50% (4)	
2	ND	75% (12)	25% (8)	
3	0% (4)	84.6% (13)	40% (10)	
4	ND	69.2 (13)	36.4% (11)	
5	60% (5)	90% (10)	66.7% (12)	
8	80% (10)	72.2% (11)	33.3% (6)	

Potomac Watershed

Effects of Intersex

Studies with wild roach (Rutilus rutilus)
Intersex males

- Produced up to 50% less milt (per gram)
- Reduced percent of motile sperm
- Lowered ability of sperm to successfully fertilize eggs and produce viable offspring

Vitellogenin

- Vitellogenin is the serum/plasma phospholipoglycoprotein precursor to egg yolk
- Normally found in measurable amounts only in the blood of sexually mature egglaying vertebrates

Estrogen stimulates the liver to produce vitellogenin which travels to the ovaries via bloodstream and is sequestered by developing oocytes

Vitellogenin in Male Fish

Males have the gene to produce vitellogenin - usually not turned on **Exposure to natural estrogens** (phytoestrogens), synthetic or natural estrogens from human and agricultural sources, and estrogen mimics such as toxaphene, dieldrin, endosulfan, PCBs, alkylphenols and other chemicals may stimulate vitellogenin production by males

Endocrine Disruption in Potomac River

 Male smallmouth from the some of the same sites as those with intersex also had circulating vitellogenin

 Largemouth bass also have intersex, although at a lower prevalence (0-30%)

Other Potential Effects of Exposure to Estrogenic Compounds

Behavioral effects?

- Courtship
- Mate competition
- Nest guarding

Using Biological Responses to Screen Water/Sediment Extracts for Estrogenic Potential

🛀 E-screen

Estrogen sensitive mammalian cell line – estrogenicity can be tested by assessing proliferation

Primary fish hepatocyte cultures

Culture hepatocytes in culture and look for vitellogenin production in tissue culture supernatants after exposure