EPA Radionuclides Rule and the RadNet Program

Kelly Moran (215) 814-2331 moran.kelly@epa.gov

7/20/2011

U.S. Environmental Protection Agency

What is a radionuclide (radioisotope)?

- <u>element</u>
 - any one of 100+ unique substances from which all matter is comprised; defined by the number of protons
 - examples: hydrogen, oxygen, nitrogen, carbon
- <u>isotope</u>
 - variant of an element with a different number of neutrons, but with the same number of protons
 - the number following the element indicates the mass number (protons + neutrons)
 - examples: radium-226, radium-228 (both have 88 protons but radium-226 has 138 neutrons and radium-228 has 140 neutrons)

What is a radionuclide (radioisotope)?

- isotopes are either stable or unstable
- unstable isotopes are radioactive
- unstable isotopes undergo radioactive decay to achieve stability
- one of three types of particles or radiation (alpha particles, beta particles and gamma rays) is emitted during each stage of decay
- radioisotopes can emit more than one kind of radiation, but are classified by the most dominant

Radioactive Decay Series

• examples of decay series:

 $\begin{array}{l} \underline{Uranium-238}\\ \hline \textbf{U-238} \rightarrow \textbf{Ra-226} \rightarrow \textbf{Rn-222} \rightarrow \textbf{Po-210} \rightarrow \textbf{Pb-206}\\ (\alpha) & (\alpha) & (\alpha) & (\beta) & (stable) \end{array}$ $\begin{array}{l} \underline{Thorium-232}\\ \hline \textbf{Th-232} \rightarrow \textbf{Ra-228} \rightarrow \textbf{Ra-224} \rightarrow \textbf{Pb-208}\\ (\alpha) & (\beta) & (\alpha) & (stable) \end{array}$

Radionuclides in the Environment

- natural sources
 - uranium and other deposits
- man-made sources
 - hospitals
 - research facilities
 - pharmaceutical companies
 - nuclear power plants
 - fallout from nuclear weapons testing

• uses

- nuclear medicine
- industry & mining
- food preservation
- household goods
- geology, archaeology and paleontology

Radionuclides in the News

- Marcellus Shale
 - 400 million year old marine sedimentary rock
 - largely untapped natural gas reserves
 - environmental concerns around the drilling and extraction processes
 - releases of naturally occurring radioactive material to the environment

• Fukushima & I-131

- 3/11/11 earthquake and tsunami
- nuclear meltdowns
- releases of radioactive isotopes (I-131)
- largest nuclear accident since Chernobyl

Radionuclides Rule Code of Federal Regulations <u>40 CFR</u>

- 141.25 analytical methods
- 141.26 monitoring frequency
- 141.55 -- MCLGs
- 141.66 MCLs
- 142.16 special primacy requirements
- 142.65 variances and exemptions

Radionuclides Rule: A Quick Reference Guide

Tt'o*	Radionuclides R. e 66 FR 76709 Decamber 7, 2000 Vol. 65, No. 238
Puroosc	Roducing the exposure to isotionul/dos in drinking water will reques the risk of cancer. This rule will also improve public health protection by reducing exposure to all radionulo dos
Several Descriptión	The rule retains the existing MGLs for combined radium-226 and redium-228, gross along porticite radioactivity and boto particle and choton activity. The rule regulates unan um for the first time.
Ullilles Coverad	Community water systems, all size calegories.
tedaral drinking full compliance.	provides a summary of water requirements; to onsure pease consult the federal 0 CTR 141 and any approved ints

Public Heal	th Benefits
Implementation of the Radionucides Rule withresult in	Reduced uranium exposure for 620,000 persona, protection from toxic kicney effects of uranium and a reduced risk of cancer.
Estimated incaces of the Radionuclides Rule induce	Annual compliance costs of S61 million. Only 795 systems will have to install treatmont

Regulated Radionuclido	MCL	MCLG
Detaktholor err tiers**	4mmam/yr	U
Cross sipha part c c	15 pC/L	٥
Corribined radiunt- 226/225	5 4G/L	U
Urahlum	ՅՅԱԾՐ	0
""A total of 168 ind vidua em flera may be used to o lihe MCL.		

Critical Deadlines	& Requirements
For Drinking Water Systems	
June 2000 - December 8, 2003	When allowed by the State data collected batwach linese dates may be eligible for use se grandfathered data (excluding over confide and choice amitters).
December 8, 2003	Systeme begin initial monitoring under Stato-specifiert monitoring gian unless the State permits use of grand/schorod data.
December 31, 2007	All systems must complete initial monitoring.
For States	
December 2000 - December 2003	States work with systems to carabilish manifering soliedules
December 3, 2000	States should begin to update vulnerability assocsmonts for linels phulum and particle emitters and notify systems of monitoring requirements.
Sprit g 2001	EPA meeta and works with States to explain new rules and requirements and to initiale adoption and implementation adjustics
December 3, 2002	Size auch ta primacy revision soplication to EPA . (EPA approves within 50 days.)

Quick Reference

	MCL [§141.66]	MCLG [§141.55]	DL [§141.25, Table B]	BAT [§141.66(g), Table B]
Gross α	15 pCi/L (excludes Rn & U; includes Ra-226)	0	3 pCi/L	RO
Ra-226	5 pCi/L	0	1 pCi/L	IE, RO, LS
Ra-228		0	1 pCi/L	
Uranium	30 μ <mark>g/L</mark>	0	1 μg/L	IE, RO, LS, C/F
Gross β/ photon	4 mrem/yr	0	varies	IE, RO

RO = reverse osmosis; IE = ion exchange; LS = lime softening; C/F = coagulation/filtration

Radionuclides Rule Overview

- the Rule applies to all CWS
- sampling is to be performed at each entry point to the distribution system (EP)
- specifies MCLs for gross alpha, combined Ra-226/-228, uranium and beta/photon emitters
- provides public health protection by reducing exposure to natural and man-made radionuclides

7/20/2011

Alpha Emitters (gross α, Ra-226/-228 and U)

- initial monitoring
 - systems without historical data had to take 4 quarterly samples before 12/31/07
 - if initial monitoring samples are > MCL, quarterly monitoring is required until 4 consecutive quarters are < MCL

Alpha Emitters (gross α, Ra-226/-228 and U)

- reduced monitoring
 - ⁻ RAA BDL \rightarrow sample every 9 years
 - [−] DL ≤ RAA ≤ $\frac{1}{2}$ MCL → sample every 6 years
 - [−] $\frac{1}{2}$ MCL < RAA ≤ MCL → sample every 3 years
- increased monitoring
 - RAA > MCL → quarterly sampling until 4 consecutive quarters are < MCL

Beta/Photon Emitters

(gross β , γ emitters, I-131, Sr-90 and tritium)

- man-made radionuclides
- no monitoring required for most CWS
- monitoring only required if designated by the State as "vulnerable" or "contaminated"
- "vulnerable" screening level = 50 pCi/L
- "contaminated" screening level = 15 pCi/L
- screening level = "level of concern"

Beta/Photon Emitters

(gross β , γ emitters, I-131, Sr-90 and tritium)

- monitoring "vulnerable" systems
 - quarterly samples for gross β
 - annual samples for tritium and Sr-90
 - if the RAA of (gross β K-40) ≤ 50 pCi/L → reduced monitoring (1 sample/3 years)
 - any exceedance triggers monthly monitoring until the 3-month running monthly average is < screening level (50 pCi/L)
 - exceedance of screening level requires analysis of individual radionuclides (speciate) and dose calculation for compliance with 4 mrem/yr MCL

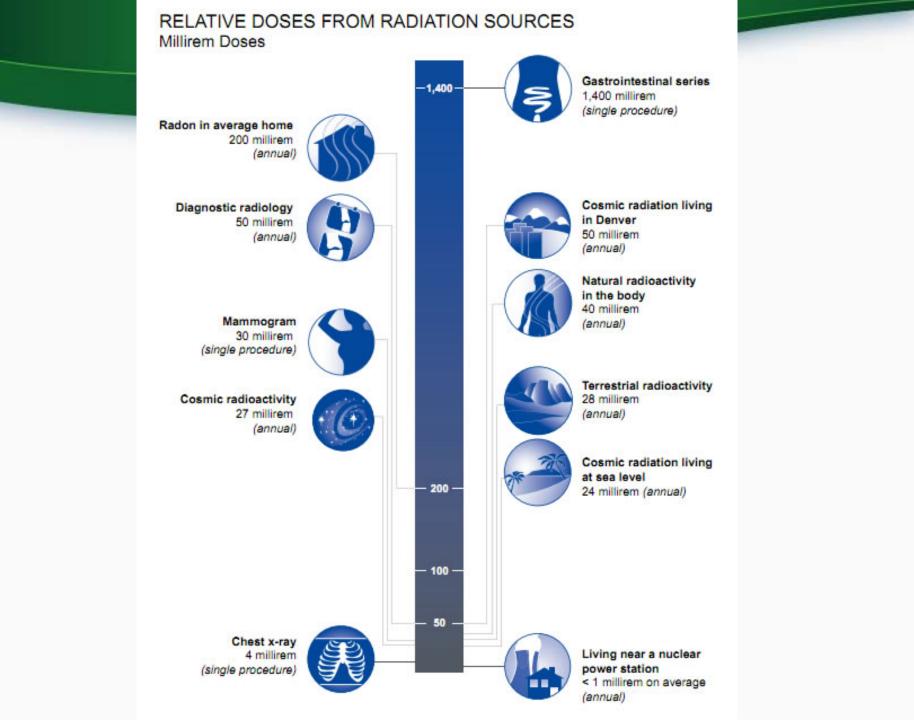
Derived Concentrations (pCi/l) of Beta and Photon Emitters in Drinking Water

Vielding a Dose of 4 mmm/yr to the Total Body or to any Critical Organ as defined in NBS Handbook 69

									- spanz	0.000			
Nuclide	pCi/l	Nuclide	pCi/I	Nuclide	pCi/I	Nuclide	рСі/І	Nuclide	pCi/l	Nuclide	pCi/l		
19	20,000	Ni-02	205	ND-95	300	Sh-124	80	Nd 147	200	Qe-L91	S0(
Bc-7	8.000	Cu-04	900	Nb-97	3,000	Gb-125	300	Nd 149	900	Oc-191m	9,00		
C-14	2.000	Zn-ua	000	Mc-89	600	To-1250)	800	Prr - 147	800	Os-195	20		
F 18	2.000	Zn-68	8,000	16-96	\$30	Te-127	200	Pm 149	100	16-199	50		
Na-22	400	Zn-63m	200	To-96m	30.000	To-127m	200	Sm-151	1,000	Ir-192	:0		
No-24	500	Ga-72	100	To-97	6.500	To 128	2.000	Sm-153	200	Ir-194	9		
8 31	0,000	G9-71	8,000	To-87m	1.000	To-129m	9C	E0-162	200	Ft-191	30		
F-32	ac	As-73	1,000	To-99	906	To 13110	200	Eu-154	00	PI-190	3,00		
S-35 inorg	500	A3-74	- 00	7c-99 h	20.000	To 132	9C	Eu-165	600	P -190m	3,00		
GI-56	766	As-76	80	FL-97	1.000	126	2	Ge-158	600	P197	20		
GI-38	1,000	A8-77	200	Bu-193	200	129	1	Oc-159	200	2 197m	3,00		
K-12	900	Se-75	900	Eu-105	200	1-131	0	16-160	100	Au 198	60		
Ga-15	10	Br-82	100	Pu-108	30	1-132	90	Dy-185	1,000	Ac 195	1d		
Ga-17	30	145-55	600	Pu-103 n	30,000	1-133	10	Dy-186	100	A. 199	60		
50-16	100	D5-57	300	Ph-105	300	1-134	100	Ho-166	00	Hg 197	80		
Sp-17	300	Sr-85 m	20,000	Pd-103	900	1-135	30	Er-169	300	Hg 19710	e 60		
So-18	30	Sr-85	900	Pu 109	300	Ca-191	20,000	Er-171	300	Hg 203	5		
V-48	90	St-35	20	Ag 105	300	Ca-184	C5	Tm-170	100	TI 200	1,00		
Gr-51	0,000	Sr-90	з	Ad 110m	90	Cs-134 n	20,000	Tm-171	1,600	TI-201	90		
M6-52	90	Sr-91	200	Ac 111	100	Ca-155	900	Yb-175	300	=TI-202	30		
M0-54	300	\$4-92	200	Gd-109	605	Ca-136	800	Lu-177	300	TI-204	30		
Min-56	300	Y-90	60	Od-115	90	Cs-107	200	118-101	220	Pb-203	n,00		
Fe-ba	2,000	Y-91	80	Gd-115m	90	Ba-131	600	To-192	100	=Bi-206	10		
He-a9	200	Y 91m	9,000	In-113m	3,000	Ba-140	90	W-101	1.000	Bi-207	20		
Contra	1 000	Y-92	200	In-114m	6D	La-140	60	W-105	300	PE-230	60		
Cn-15	300	Y-93	80	In-115	300	Ce-1/1	300	W-107	200	Pe-233	30		
C0-58m	9000	Zr-9-3	2,000	In-Hum	1,000	Ce-1/3	.00	Re-106	300	Np-289	- 30		
Co-50	100	Zr 95	200	Sn-115	300	Ce-1/4	30	Be-107	9.000	Pu-271	90		
NI-59	300	Zr 97	60	Sn-126	60	Pr-142	90	Rc-100	200	BIc-249	2.00		
NI-63	60	ND 93/1	1.005	Sb-122	90	Pr-143	100	OS 185	200				

13

Beta/Photon Emitters


(gross β , γ emitters, I-131, Sr-90 and tritium)

- monitoring "contaminated" systems
 - quarterly samples for gross β and I-131
 - monthly samples or composites of 3 monthly samples
 - average 5 consecutive daily samples 1x/quarter (I-131)
 - annual samples for tritium and Sr-90
 - composite or average of 4 quarterly samples
 - if the RAA of (gross β K-40) ≤ 15 pCi/L → reduced monitoring (1 sample/3 years)
 - any exceedance triggers monthly monitoring until 3-month running monthly average < 15 pCi/L
 - exceedance of screening level \rightarrow same as "vulnerable" systems

Background Radiation & Relative Doses

- background radiation
 - exposure has increased from 360 mrem/yr \rightarrow 620 mrem/yr
 - due to an increase in medical imaging procedures
- relative doses
 - mammogram = 30 mrem/yr
 - gastrointestinal series = 1,400 mrem/yr
 - cosmic radiation (Denver) = 50 mrem/yr
 - live near a nuclear power station = < 1 mrem/yr</p>
 - **gross** β MCL = 4 mrem/yr = single chest x-ray

EPA's RadNet Program

<u>background</u>

- environmental monitoring since 1978
- national network of monitoring stations
- regularly collect air, precipitation, milk and drinking water
- tracks ambient radiation levels in the environment

<u>RadNet drinking water program</u>

- quarterly sampling in Jan, April, July and Oct
- more than 50 sites nationwide
- sites are primarily located in major population centers
- from finished water supplies (tap samples)
- volunteer driven

7/20/2011

U.S. Environmental Protection Agency

EPA's RadNet Program

- <u>RadNet is NOT</u>
 - regulatory/compliance monitoring
 - a check on drinking water systems
 - a means for monitoring nuclear facilities
 - an early warning system for nuclear accidents
- additional sampling
 - EPA initiated extra rounds of sampling
 - states in Region 3 monitored
 - some systems sampled ahead of reduced monitoring schedule

EPA's RadNet Program

- <u>results</u>
 - below levels of public health concern
 - consistent with what was expected from the Japanese Nuclear Incident
- <u>data</u>
 - all Japan related sample analysis: <u>www.epa.gov/japan2011</u>
 - RadNet website: <u>www.epa.gov/radnet</u>

Iodine-131

- <u>facts</u>
 - radioactive form of iodine
 - byproduct of nuclear fission
 - half-life of 8 days
 - used to treat thyroid disease/cancer
 - sources include nuclear power plants, hospitals, medical treatment centers and pharmaceutical manufacturers
 - regulated contaminant one of 168 individual emitters (gross β)

Iodine-131

- <u>MCL</u>
 - ⁻ 3 pCi/L, yielding a dose of 4 mrem/yr
 - calculated based on standard assumptions: 2 L intake per day, at an average body weight of 70 kg and over a 70 year life span (chronic exposure)
 - extremely protective of human health
 - World Health Organization standard = 270 pCi/L
 - Canadian standard = 162 pCi/L

lodine-131

- Philadelphia & I-131
 - elevated I-131 levels persist in Philadelphia after
 Fukushima related radiation subsides in the rest of the country
 - RadNet data reveals detects of I-131 slightly over MCL in Philadelphia in last few years
 - conclusion: source of I-131 in the Philadelphia area unrelated to Fukushima

Iodine-131

- source track-down
 - Philadelphia's drinking water is safe!
 - PWD, PADEP and EPA have entered into a Joint Action
 Plan to aggressively track down potential sources of I-131 in
 Philadelphia's source waters
 - PWD sampling its three drinking water plants (raw & finished) for gross β and I-131
 - PWD also sampling for ambient source water concentrations of gross β and I-131 at seven locations in the Wissahickon Creek, downstream of POTWs

Iodine-131

- source track-down
 - PADEP sampling effluent for I-131 at the five POTWs in the Wissahickon Creek
 - EPA looking at sewer collection areas for each POTW in the Wissahickon
 - so far, no "smoking gun" identified
 - patients treated with I-131 for thyroid disease could be a cause
 - low flow stream sampling may help to identify potential sources

Questions???

