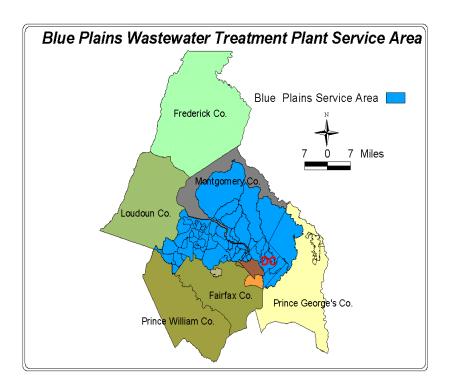


### Understanding sources, management, and impact of Endocrine Disrupting Compounds (EDCs) in the Potomac

Sudhir Murthy, PhD, PE WEF Fellow, IWA Fellow Manager, Research and Laboratory DC Water



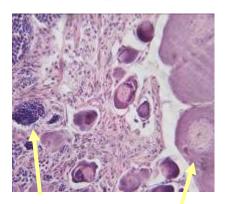



- Background/ Context
- What are the typical estrogenic compounds in watewater?
- What are the treatment impacts?
- Where do we go from here?



# **dcó** water is life




### **General Information**

- 370 mgd ADF
- 1,076 mgd Peak
- CSO Flows
- 2 Million Customers
- 725 sq mile Service Area

# water is life Evidence of Reproductive Disruption in Fish Downstream WWTP Discharges

- Sex Ratio: skewed toward females downstream of WWTP Discharges
- 2. Vitellogenin (estrogen-dependent female yolk protein) elevated in males downstream of WWTP.
- USGS have conducted research in the Potomac Fish but no causal link to Blue Plains





nale female



### **USGS Study** water is life

"The proximity to wastewater treatment plants may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes".

Iwanowicz, L. R. et al. (2009) Reproductive Health of Bass in the Potomac, USA, Drainage: Part 1. Exploring the Effects of Proximity to Wastewater Treatment Plant Discharge. *Environmental Toxicology and Chemistry*. 28, 1072-1083



# **dcó** water is life



"The Potomac River in Washington, D.C. is showing multiple benefits from restoration efforts. Reduced nutrients and improved water clarity have increased the abundance and diversity of submerged aquatic vegetation (SAV) in the Potomac, according to direct measurements taken during the 18-year field study".

Ruhl, H. A. and Rybicki, N. B. (2010) Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat *PNAS.* 107, 16566-16570.





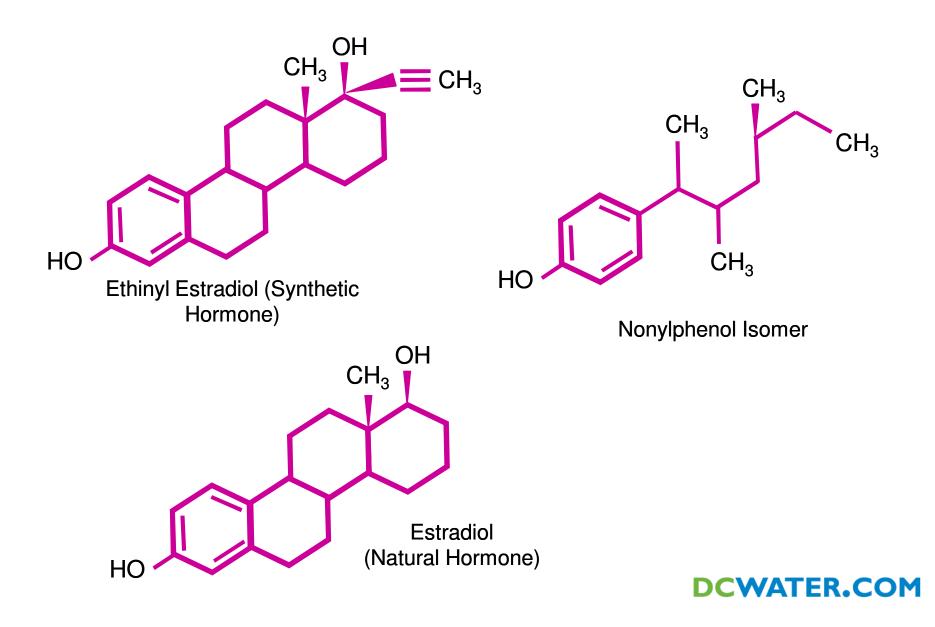


Wastewater study and testing:

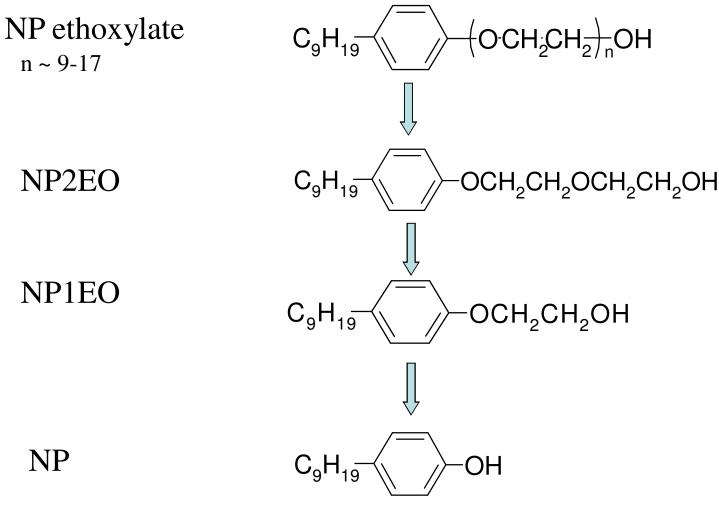
-the Authority shall initiate a study that tests for the presence of endocrine disruptor compounds in wastewater effluent

-the Authority shall present the findings of the study to an advisory Panel, the General Manager, the Mayor, and the Council within 30 days of the study's completion

-this section shall be subjection to appropriation




# dcd water is life Found in Wastewater Effluents

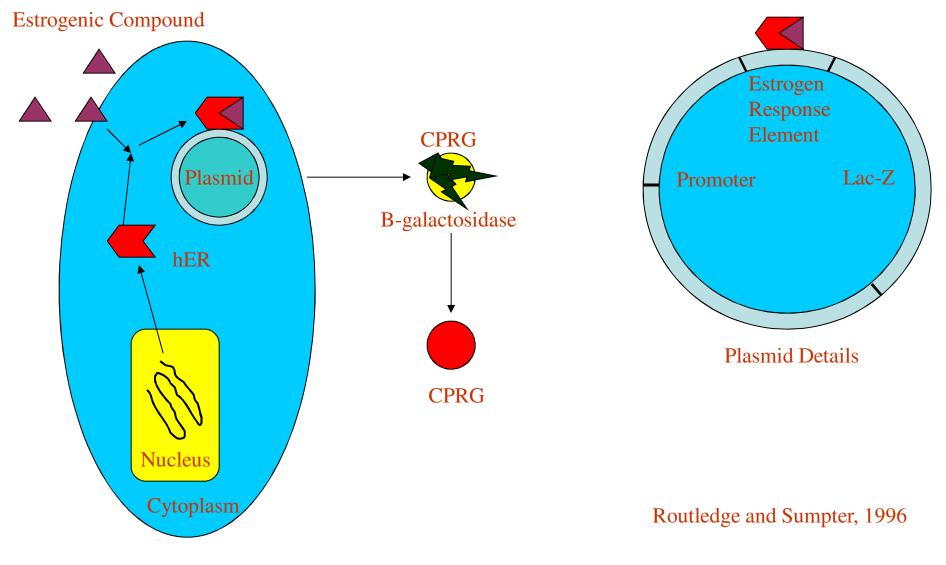

- Natural estrogens- estrone (E1) and estradiol (E2)
- Synthetic estrogen- Ethinylestradiol (EE2)
- Alkylphenol Ethoxylate Degradation Products (Octylphenol/Nonylphenol)



### water is life Major Estrogenic Compounds

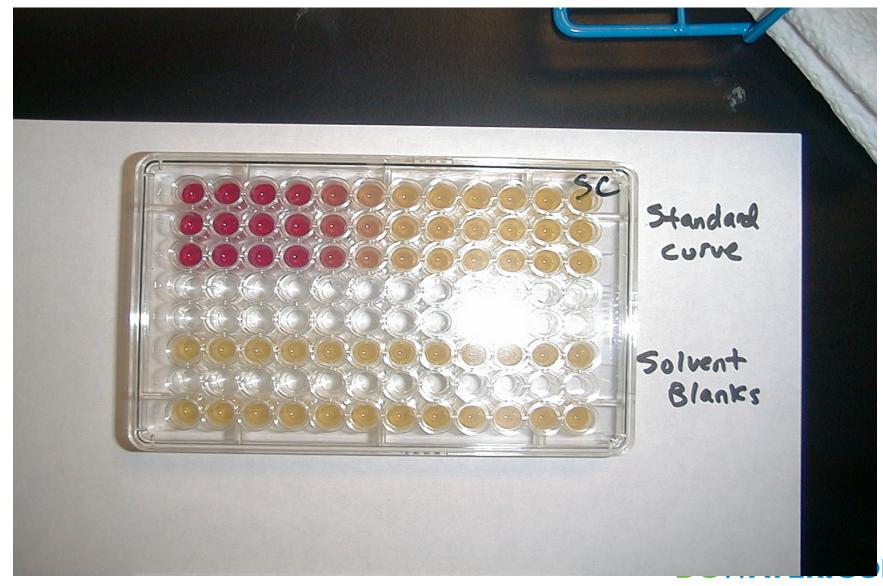


water is life Metabolites of Nonylphenol Ethoxylates (from Ahel *et al.*, 1994; Naylor, 1992)






# Bans and Restrictions on Use of NPE in European Union and Canada




# dcd Yeaste Estrogen Screen

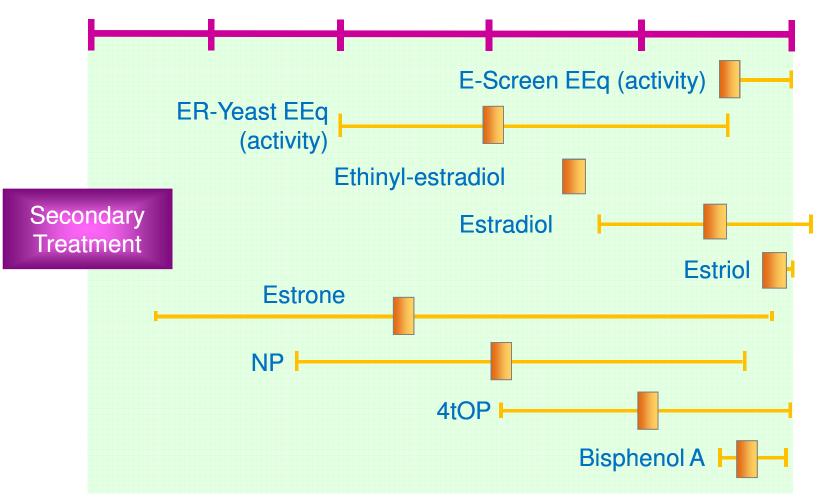




# dcd water Mierotiter Plates






### **YES Standards Data**

| Analyte | Eeq <sup>1</sup> | Literature<br>Ranges                |
|---------|------------------|-------------------------------------|
| E2      | 1.0              | 1                                   |
| EE2     | 1.5              | 0.17 – 1.4                          |
| E1      | 0.97             | 0.02 – 0.5                          |
| E3      | 0.011            | 0.002 – 0.3                         |
| NPs     | 0.00038          | 10 <sup>-5</sup> – 10 <sup>-3</sup> |

<sup>1</sup> Eeq data courtesy of Dr. Benjamin Stanford, Hazen and Sawyer (Data originally published in 2007).







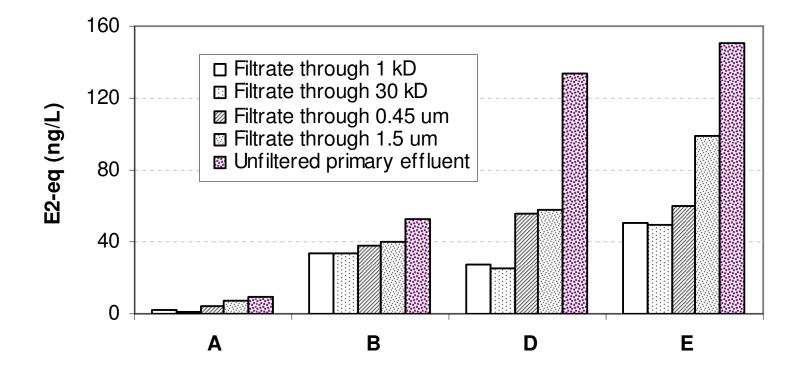
Drewes et al. 2006. Removal of Endocrine Disrupting Compounds in Water Reclamation Processes. Water Environment Research Foundation (01-HHE-20T). Graphic courtesy of Hazen and Sawyer.

#### **Blue Plains AWTP**

370 mgd (AA) to 518 mgd (Max Day)
TN < 7.5 mg/l & TP < 0.18 mg/l</li>
Future TN ~ 3 mg/l peak annual flow
12°C winter monthly average

Potomac River






| E2*<br>(ng/L) | Primary<br>Effluent | Secondary<br>Effluent | Nitrification<br>Effluent | Final<br>Effluent |
|---------------|---------------------|-----------------------|---------------------------|-------------------|
| 05/21/2004    | 8.2                 | <2.5                  | <2.5                      | <2.5              |
| 07/02/2004    | 10.6                | 37                    | <2.5                      | <2.5              |
| 12/27/2004    | 64.4                | 60                    | <2.5                      | <2.5              |

\*expressed as 17β-estradiol equivalent







\*Primary Treatment Effluent of 4 plants



### water is life Water Quality

#### **EPA** recommended water quality criterion for nonylphenol.

| Constituent<br>(µg/L)                 | Class-C<br>CCC | Class – C<br>CMC | New constituent and criterion<br>added. EPA recommended<br>final aquatic life ambient |
|---------------------------------------|----------------|------------------|---------------------------------------------------------------------------------------|
| Nonylphenol<br>CAS number<br>84852153 | <u>6.6</u>     | <u>28</u>        | water quality criterion. EPA-<br>822-R-05-005, December<br>2005.                      |

CCC- Criterion Continuous Concentration- Chronic CMC- Criterion Maximum Concentration- Acute



### water is life Nonylphenol

| Influent      | Nonylphenol |
|---------------|-------------|
| <u>Summer</u> | μg/L        |
| July          | 15.1        |
| Aug           | 36.4        |
| <u>Winter</u> |             |
| Feb           | 35.2        |
| Mar           | 22.5        |
|               |             |
| Effluent      | NP          |
| <u>Summer</u> | µg/L        |
| July          | 0.637       |
| Aug           | 0.155       |
| <u>Winter</u> |             |
| Feb           | 1.35        |

Loyo- Rosales et al. (2007) Fate of Octyl- and Nonylphenol Ethoxylates and Some Carboxylated Derivatives in Three American Wastewater Treatment Plants. *Environ. Sci. Technol.*, **41**, 6815.



# **dcó** water is life



| Influent             | NPE        |                  |
|----------------------|------------|------------------|
| <u>Summer</u>        | μg/L       |                  |
| July                 | 157        |                  |
| Aug                  | 192        |                  |
| <u>Winter</u>        |            |                  |
| Feb                  | 210        | NPE= Nonylphenol |
| Mar                  | 134        | Ethoxylates- 0-5 |
|                      |            | Ethoxylates      |
| Effluent             | NPE        | Ethoxylates      |
| <u>Summer</u>        | μg/L       |                  |
| July                 | 4.74       |                  |
| A                    |            |                  |
| Aug                  | 1.62       |                  |
| Aug<br><u>Winter</u> | 1.62       |                  |
| U                    | 1.62<br>25 |                  |

Loyo- Rosales et al. (2007) Fate of Octyl- and Nonylphenol Ethoxylates and Some Carboxylated Derivatives in Three American Wastewater Treatment Plants. *Environ. Sci. Technol.*, **41**, 6815.

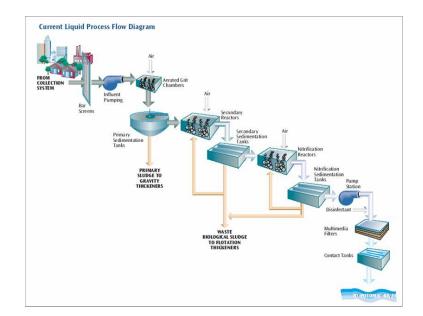


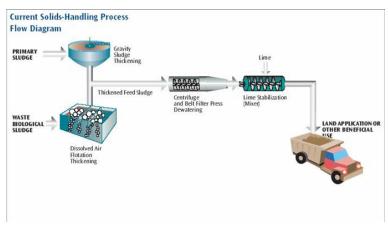
### What do we know about water is life these compounds?

- They like to attach to solids
- They can be degraded or altered to reduce estrogenic effects
  - Mechanisms for degradation are a topic of intense scrutiny



# water is life Estrogen Removal at Blue Plains


Preliminary work indicates;


- Estrogenic Activity can be removed by processes that separate solids
  - Estrogenic activity associates with solids
- Estrogenic activity can be degraded in ENR process
  - Higher SRTs and longer detention times have been linked to removal
- It can accumulate in the solids treatment processes



### dcd water is life Ongoing Work

 We plan to continue our collaboration on this work and stay informed







### water is life The Proposal Team

- Erik Rosenfeldt has over 10 years of EDC/PPCP occurrence and treatment experience. He is a prinicpal engineer at Hazen and Sawyer, an Industry Leader in Emerging Contaminants Applied Research
- Luke Iwanowicz, USGS is a fish health scientist with expertise in the fields of virology, molecular biology, immunology, endocrine physiology, endocrine disruption and environmental health monitoring
- **Clifford Rice**, USDA is a scientist at the Animal and Natural Resources Institute, Agricultural Research Service and specializes in the detection of trace organic chemicals in the environment
- **Sujay Kaushal**, UMD focuses on understanding the interactive effects of land use on ecosystem ecology
- **Sudhir Murthy**, DC Water is Manager, Research and Laboratory and leads technology development associated with \$1 billion Blue Plains CIP