Sources of Chemical Information

Emerging Contaminants Workgroup

Known & Common

- Check published and online data sources:
 - Material Safety Data Sheet (MSDS)
 - May be available for Commercial Products/Mixtures
 - Chemical desk reference (e.g., Merck Index)
 - Mainly for individual substances/not mixtures
 - EPA : Water Contaminant Information Tool (WCIT)

Known & Common

- Check published and online data sources:
 - Industrial Hygiene data sources (some data intended for emergency response and occupational exposure)
 - NIOSH Pocket Guide
 - NIH-NLM WISER (Wireless Information System for Emergency Responders)
 - CHRIS (Chemical Hazard Response Information System)

Research:

MSDS Merck Toxicology

Envir Fat

DOT-PHMSA ERG (Emergency Response Guide, latest 2012)

Known & Common

- Check published and online data sources:
 - Toxicology sources
 - NIH TOXNET \rightarrow HSDB, PubChem
 - USEPA \rightarrow IRIS, ECOTOX
 - Environmental degradation rates:
 - Not all "common" substances are published
 - CHEMFATE, BIODEG
 - Handbook *Environmental Degradation Rates*
 - CDC \rightarrow ATSDR

Known Substance or Mixture

- If uncommon, is it proprietary?
- If proprietary, can a specimen be provided?

Known & Uncommon

- Seek MSDS from Operator/Owner
- Request disclosure for proprietary mixture
- Request specimen for testing
- Collect sample if no specimen available (see Unknown)

Unknown Substance or Mixture

- Unable to contact Operator/Owner:
 - Collect sample

Research:

MSDS Merck Toxicology Envir Fate

- Analyze → Identify Substance or Constituents
- Then follow published data sources for "Known & Common"

Unknown Substance or Mixture

- No MSDS or supplied specimen available →
 Collect sample
 - How far downstream from point of spill?
 - Are there any observations/reports (assuming visible impact)?

Collect Sample

Sample Analysis

- Where to sample? Is it accessible?
- Need preliminary time-of-travel estimate (based on flow)

Sampling Challenges (esp. for Unknowns)

- Container (glass, HDPE, nalgene) and chemical compatibility?
- Field/lab filtration?
- Volume collected?
- Preservative?
- Holding time? Delivery?

Analytical Challenges (esp. for Unknowns)

- Federal, State or local government lab (e.g., WSSC)? Or private?
- Analytical methods for detection?
 - Universe of substances/compounds ~100,000
 - Known substances ~10,000 (in databases)
 - Analytical methods ~500+
- Can lab meet expedited turnaround time?
- Are MDL and RDL sufficient for potentially diluted sample?

All Contaminants: Anthroposgenic and natural organics, microbes, metabolites, complexes, degradation products

> Contaminants stored or transported in Potomac Watershed

> > Contaminants for which drinking water methods exist

Contaminants for which utility laboratories have instruments and methods

Use of Published or Analytical Results

- Is substance toxic in drinking water?
 - What level?
- Is substance hazardous for human or ecological contact?
 - Beware during sample collection
- Is substance likely to degrade in sunlight/UV?
 How fast?
- Are dilution, volatilization important factors?
- Who makes decisions about hazard/risk?

Latex Spill – Relatively Simple Situation

- Low river flowrate (initially) time to react
- Cooperative manufacturer sent MSDS, sample, and technical support
- Known contaminant latex coating
- Low toxicity substance (styrene-butadiene latex polymer often provides the chew in chewing gum)
- Labs routinely monitor styrene, a regulated contaminant
- Visible plume allowed sampling from river

Latex spill constituents and sources of information

time

Latex Spill Nuances

- How much time to learn about contaminant? Paw Paw (hours) vs Washington Aqueduct (days)
 - Location of spill compared to intakes
 - River flow, weather (Nor'easter and Hurricane)
- MSDS limitations; more details from mfr
- Analytical methods available only for styrene, butadiene but not latex polymer itself or other constituents/ additives
- ICPRB spill model conc. cut off at "<1 ppm" – Styrene regulated at 0.1 mg/L
- Treatability information not available for product
- Laboratory response protocols not implemented

Preparedness Improvements – EPA's DWMAPS

- Drinking Water Mapping Application for Protecting Source Waters (DWMAPS)
- DWMAPS is an internet-based GIS tool for drinking water source water protection and assessment.
- Nationwide mapping tool
- A customizable source water protection planning tool
- Suite of data exchange services to help ensure safe drinking water
- Currently for EPA use
- Future use:
 - State agencies, drinking water utilities, source water collaboratives, watershed groups, and others

FY2016-2017 National Water Program Guidance (EPA 420-R-15-008)

Preparedness Improvements -WaterSuite

- Ongoing update of DC's 2002 source water assessment (by ICPRB) of Potomac watershed
 - Sponsored by MWCOG, contractor is Corona
 - Includes National Capitol Area utilities
 - Focus on chemicals that can spill and travel to intakes quickly
 - Ongoing negotiations about
 - Regional availability (entire watershed)
 - Use by ICPRB, regulators, etc.

Potential Role of Emerging Contaminants Workgroup

- Provide liaisons as WaterSuite and DWMAPS evolve
- Promote regional understanding of Laboratory Response Network and laboratory role in incident response
- Promote improved understanding of contaminant information tools (e.g., MSDS, WCIT, etc.)
- Review and post information on toxicity, analysis methods, treatability, etc. to databases