

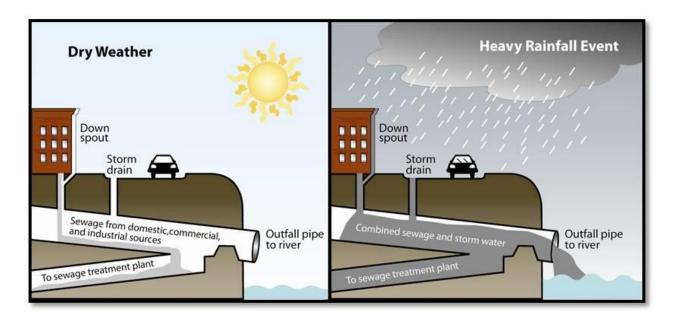
#### **Department of the Environment**

### **CSO Status in Maryland**

Presented By:

Yen-Der Cheng

Wednesday, August 7, 2019




#### What is a CSO ?

A combined sewer system (CSS) is a wastewater collection system owned by a municipality that conveys sanitary domestic, commercial, industrial wastewater and stormwater through a single-pipe system to a public owned treatment works (POTW).

A CSO is the discharge from a CSS of untreated wastewater at a point prior to the POTW.

CSOs consist of mixtures of domestic sewage, industrial and commercial wastewaters, and storm runoff.





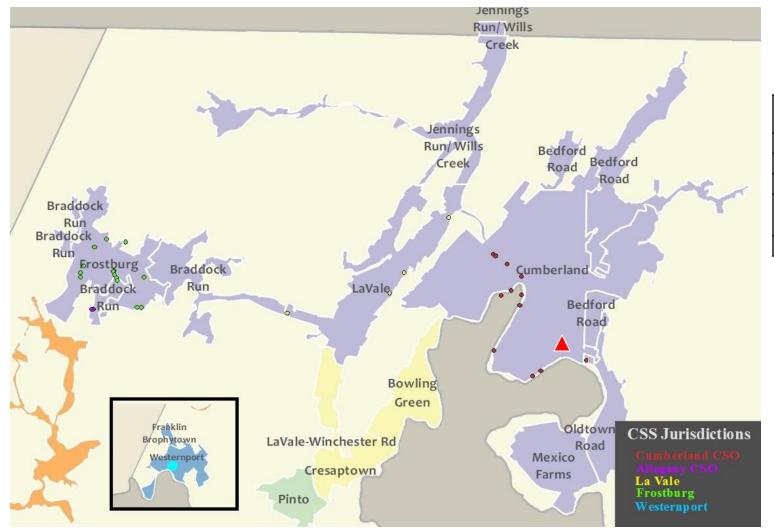
#### Locations of CSO Communities in U.S.



There are more than 700 CSO Communities within 32 states (including D.C.) Mostly concentrated in older communities in the N.E. and Great Lake regions



### **Locations of CSO Communities in Maryland (1)**

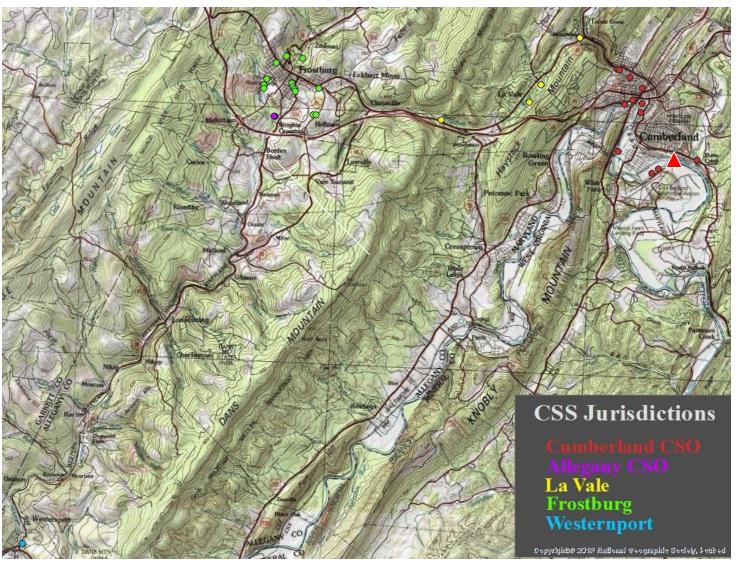



| CSS                 | Receiving<br>Stream | Status    |
|---------------------|---------------------|-----------|
| Cumberland WWTP     | Potomac River       | Operation |
| La Vale CSS         | Potomac River       | Operation |
| Allegany County CSS | Potomac River       | Operation |
| Frostburg CSS       | Potomac River       | Operation |
| Western Port CSS    | Potomac River       | Operation |

| CSS       | Receiving Stream | Status         |
|-----------|------------------|----------------|
| Baltimore | Patapsco River   | Separated 2006 |
| Cambridge | Choptank River   | Separated 2008 |
| Salisbury | Wicomico River   | Separated 2008 |



### **Locations of CSO Communities in Maryland (2)**




| CSS Jurisdiction | Outfall |
|------------------|---------|
|                  | Number  |
| Cumberland       | 11      |
| Frostburg        | 14      |
| LaVale           | 4       |
| Allegany         | 3       |
| County           |         |
| Westernport      | 1       |



10 miles

### **Locations of CSO Communities in Maryland (3)**



| CSS Jurisdiction | Outfall |
|------------------|---------|
|                  | Number  |
| Cumberland       | 11      |
| Frostburg        | 14      |
| LaVale           | 4       |
| Allegany         | 3       |
| County           |         |
| Westernport      | 1       |



0 10 miles

### **City of Cumberland WWTP**

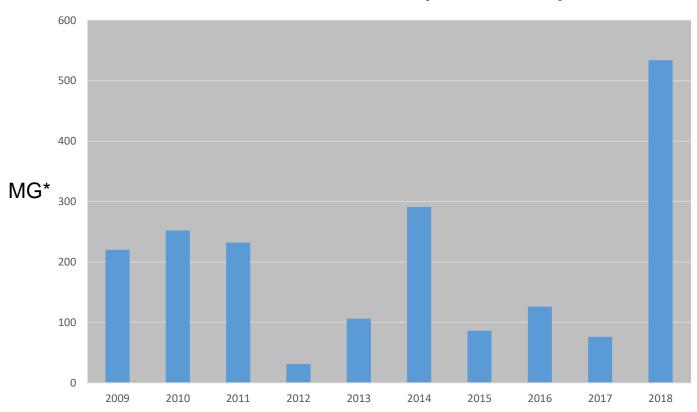






Maryland

the Environment


The Cumberland WWTP is designed to treat an average of 15 MGD, and a peak flow of 30 MGD.

Current serving 45,000 MD residents with annual average flow of 11 MGD.

The plant currently has been upgraded to Enhanced Nutrient Removal (ENR) since 2011.

#### **Total Annual CSO Flows in MD**

#### **Annual CSO Flows (2009-2018)**





### Impacts of CSOs (1)

- 1. Exceedance of Water Quality Standards
- 2. Human Health Risks
- 3. Threaten Aquatic Life and Habitats
- 4. Impair Designated Use of Waterways (i.e. beach closures, shellfish bed closures and contamination of drinking water supplies).

| Pollutant           | Consequence                             |
|---------------------|-----------------------------------------|
| Bacteria            | Public health, beach/shellfish closures |
| Trash/Floatables    | Aesthetics, beach closures              |
| BOD                 | Reduced oxygen levels, fish kills       |
| Solids              | Deposition, habitat impairment          |
| Nutrients           | Algal blooms, aesthetic impairment      |
| Metals, oil, toxics | Aquatic life impairment                 |



### **Federal Policies & Regulations**

#### 1989 - National CSO Control Strategy (54 FR 37370)

- 1.Ensure CSO occurrences are only results of wet weather
- 2.Bring all wet weather CSO discharges into compliance with technology-based & water quality-based requirements of the Clean Water Act(CWA).
- 3. Minimize the impacts of CSO on water quality and public health.
- 4. Request States to develop permitting strategies to reduce or eliminate CSOs.

#### 1994 - CSO Control Policy (59 FR 18688)

- 1. EPA adopted a process to accelerate the implementation of the strategy and developed the policy in conjunction with stake holders.
- 2. Provide guidance to CSS permittees, NPDES permitting and enforcement authorities, and State's WQS authorities.
- Contain four key principles to ensure CSO controls are cost-effective and meet the objectives of CWA.



### **EPA CSO Control Policy - Key Principles**

### 1994 - CSO Control Policy (59 FR 18688)


- 1) Provide clear levels of control
- 2) Provide sufficient flexibility
- 3) Allow a phased approach to implementation
- 4) Review and revise WQS if appropriate





#### **NPDES Permits Issued to MD CSS**

| CSS Jurisdiction | NPDES NUMBER | <b>Expiration Date</b> |
|------------------|--------------|------------------------|
| Cumberland       | MD0021598    | 3/31/2020              |
| Frostburg        | MD0067423    | 11/30/2023             |
| LaVale           | MD0067547    | 10/31/2023             |
| Allegany County  | MD0067407    | 10/31/2023             |
| Westernport      | MD0067384    | 11/30/2023             |



#### **NPDES Permits**

NPDES Permitting

- □ Permit term: 5 years
- Issued by authorized states, tribes, or EPA
- □ Public review and comment on draft permits
- □ EPA review of "state" draft permits
   Discharges to territorial seas

  - Discharge may affect water of another "state"
  - Selected "majors"
- Administrative and judicial appeal processes



### Regulatory Approach

- 1. NPDES discharge permit issued to each CSS will set requirements consistent with the Key Principles. Monitoring and reporting of CSO events and volumes are mandatory.
- 2. Each CSS will implement Nine Minimum Controls(NMC) to reduce CSO events and volumes. Documentation and reporting for NMC taken is required (NPDES Permit Phase I requirement).
- 3. Each CSS will develop Long Term Control Plan (LTCP), subjected to approval (by MDE), to set milestones and goals to eventually meet the Water Quality Standard (WQS). (NPDES Permit Phase II requirement).

Marvland

the Environment

### Nine Minimum Control (NMC)

The NMCs are minimum "technology-based controls" that can be used to address CSO problems -- without extensive engineering studies or significant costs -- prior to implementation of long-term control measures.

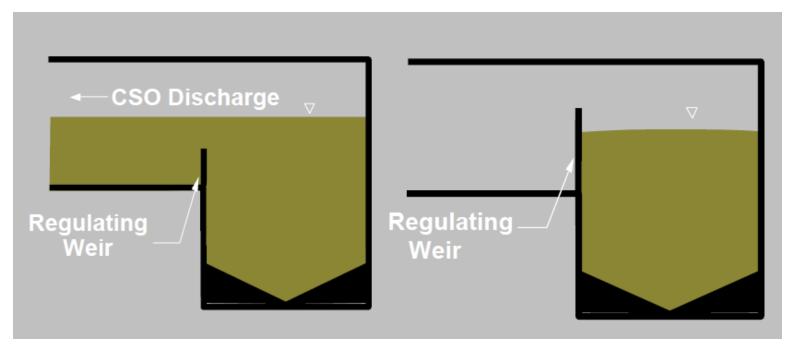








### **Nine Minimum Controls (1)**


Proper operation and regular maintenance for the sewer system and the CSOs





### **Nine Minimum Controls (2)**

### Maximize the collection system for storage





### **Nine Minimum Controls (3)**

### Review and revise pretreatment requirements to minimize CSO impacts

**Industrial Source** Commercial Source:

Hospitals, Automobile Services, Restaurants, Laundries, Dentist.....





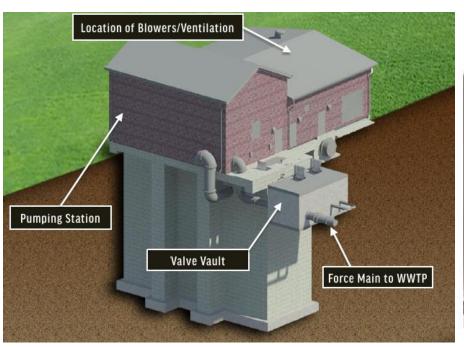

















### Nine Minimum Controls (4)

Maximizing flow to the POTW for treatment By increasing conveyance and pumping capacity







### **Nine Minimum Controls (5)**

### **Prohibition of CSOs during dry weather**





### **Nine Minimum Controls (6)**

#### Control of solids and floatable materials in CSOs





### **Nine Minimum Controls (7)**

#### **Develop Pollution Prevention Programs**









### Nine Minimum Controls (8)

# Adequate public notification of CSO occurrences and CSO impacts





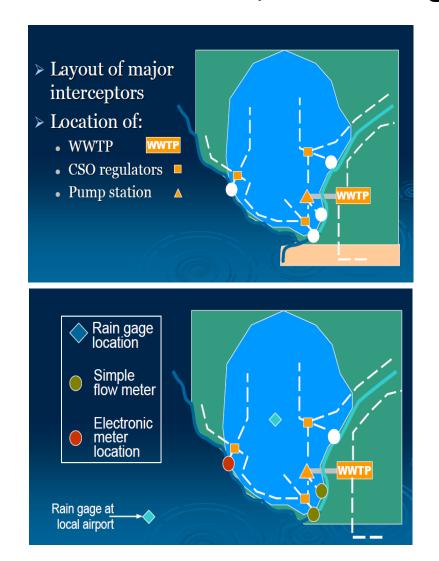
### Nine Minimum Controls (9)

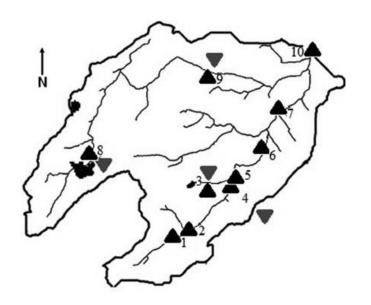
Monitoring to effectively characterize CSO impacts and the efficacy of CSO control





### **Long Term Control Plan (LTCP)**


- LTCP is Water Quality Base Control
- 2. Permittee with CSO is responsible to develop LTCP that will ultimately result in compliance with requirements of the CWA
- 3. Development and implementation of LTCP should be **coordinated** with NPDES permit authority and State authority responsible for reviewing and revising WQS.
- 4. The selected controls should allow cost-effective expansion or retrofitting should additional control is necessary to meet existing or designate use.






### **Element of LTCP (1)**

#### Characterization, Monitoring, and Modeling of the CSS







### **Element of LTCP (2)**

#### Public Participation with stake holders





### **Element of LTCP (3)**

#### **Consideration of sensitive areas**

waters with primary contact recreation designation, endangered species and their habitat, public drinking water intake

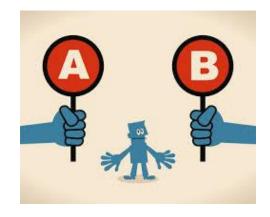
Eliminate or relocate CSOs discharging to the sensitive area. Prioritizing the CSO reduction or elimination projects in the area.





### **Element of LTCP (4)**

Two options to provide CSO communities with targets for CSO control to meet the WQ based requirements of CWA.


#### **Presumption Approach:**

Achieve 85% CSS flow capture or limit CSO event to less than 4 per year

#### **Demonstrative Approach:**

Demonstrate that CSO controls attain water quality standards

- Remaining CSO discharges will not preclude WQS attainment
- Maximum reasonable pollution reduction
- Provisions for cost-effective expansion should WQS not be met





### **Element of LTCP (5)**

#### **Maximization of Treatment at the POTW**

Minimize the CSO by maximizing the conveyance of flow to the POTW and utilize the existing treatment works.













### **Element of LTCP (6)**

### CSO Controls: O&M Practices

Sewer inspection and testing Manual vs. remote

Sewer cleaning

Hydraulic, mechanical, chemical

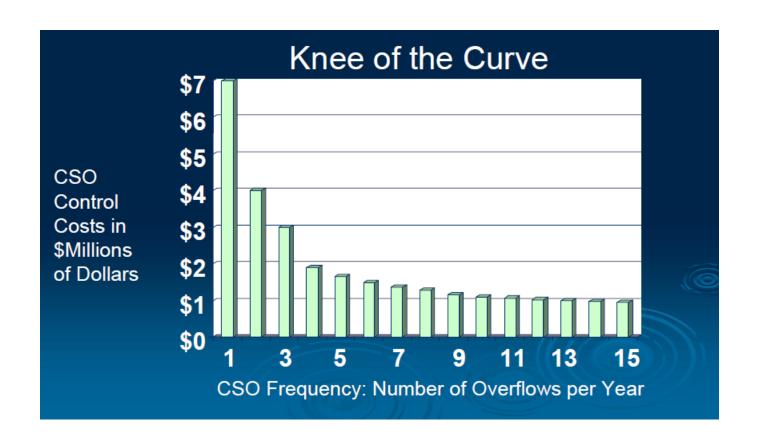
Pollution prevention

Source control

Water quality monitoring and public notification

To minimize exposure

Note: Many elements of NMC are source controls





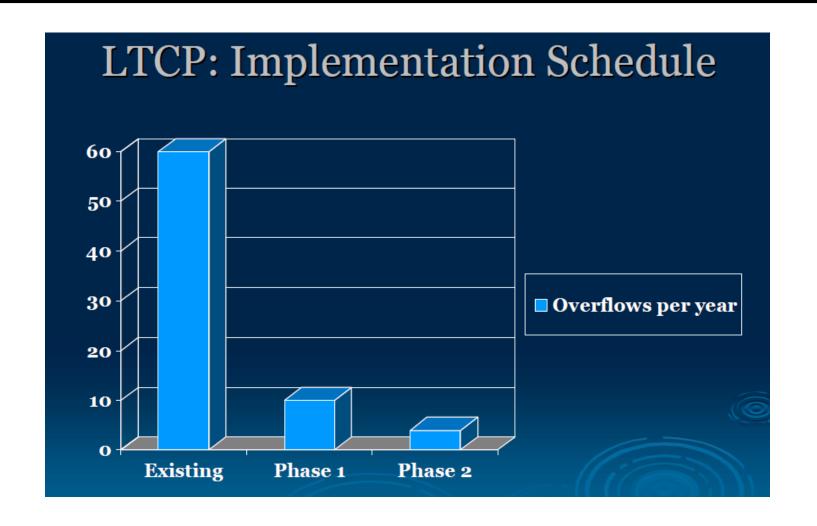



### **Element of LTCP (7)**

### Cost/Performance Considerations






### **Element of LTCP (8)**

## LTCP: Operational Plan

- General O&M for entire CSS including POTW
- ➤ Individual O&M plans for CSO facilities:
  - Operating instructions
  - Maintenance activities
  - Staffing, training and safety
  - Monitoring



### **Element of LTCP (9)**





### **Element of LTCP (10)**

# LTCP: Post-construction Compliance Monitoring

- ➤ Intended to determine the effectiveness of LTCP in meeting CWA requirements and local goals
- ➤ Focus on operation of CSO controls as described in the LTCP, and attainment of WQS
- Required condition under NPDES permits



#### **MDE Consent Decree for CSS Communities**

(01-C-00-18342L, 2001): Cumberland, LaVale, Frostburg & Allegany County Requires the completion of CSO eliminations or controls as stated in the approved LTCP by 2023

(01-C-00-18487L, 2002): Westernport Requires the completion of CSO eliminations or controls as stated in the approved LTCP by 2022.

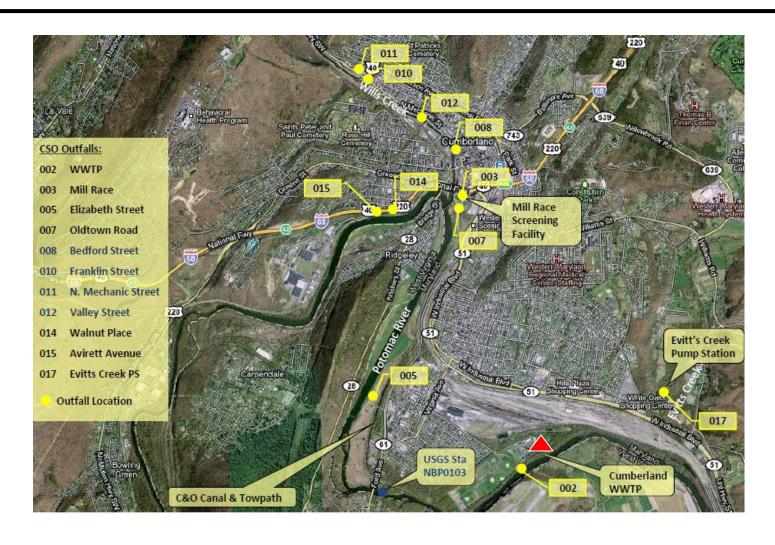




### **Summary – CSO Reduction and Elimination Efforts**

| Jurisdiction       | Main Activities                                                                                                                                                                                                                                                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cumberland         | 1.Sewer system rehabilitation 2.Storage facility (5 million Gallon underground facility) 3.Enlarge and enhance conveyance capacity 4.Working modeling on demonstrative approach through water quality monitoring                                                  |
| Frostburg          | Separation of combined sewer system (50% completed). Sewer system rehabilitation                                                                                                                                                                                  |
| LaVale             | <ol> <li>Rehabilitation of manholes and relining the interceptors</li> <li>Enlarge the capacity of pumping station and a new gravity sewer line to Cumberland</li> </ol>                                                                                          |
| Allegany<br>County | <ol> <li>Flows to pump station are maximized by regulating baffles in the manholes. Regulating baffles are being inspected regularly during dry and wet weather.</li> <li>Pump stations are regularly maintained and inspected at least once per year.</li> </ol> |
| Westernport        | <ol> <li>Construct treatment structure from WTP to<br/>eliminate CSO caused by backwash</li> <li>Separation of combined sewer system from the<br/>main streets.</li> </ol>                                                                                        |






# **Example:**

# City of Cumberland CSO Control Approach



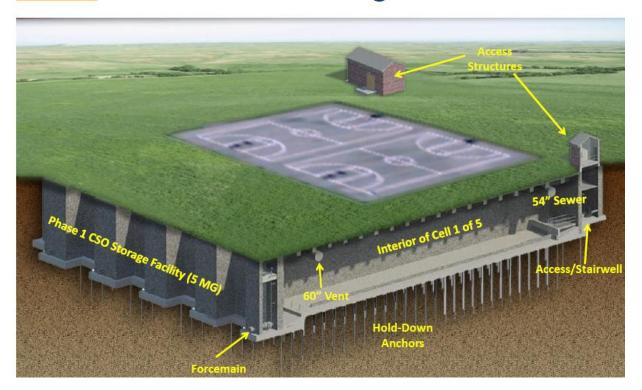
# **City of Cumberland CSO Outfalls**



Historically, combined flow from outfall #2 (WWTP) & outfall #3 (Mill Race) represent more than **80%** of total CSO volumes from Cumberland



# **City of Cumberland CSO Reduction Projects**


Mechanic Street Sewer Study Mill Race Improvements Evitt's Creek Pump Station 78" Pipeline from Mill Race Evitt's Force Main and Gravity Sewer CSX Sewer Rehab Phase 2 Treatment Facili Phase 2 Storage Facility Phase 1 Storage Facility

Completed project

Ongoing and future project



## Phase I CSO Storage 5 MG at WWTP



The 5 MG facility will hold excess stormwater until treatment capacity is available at the Cumberland WWTP, thereby significantly reducing the quantity of untreated wastewater entering the North Branch Potomac River. The storage can be expanded to 20 MG if necessary.

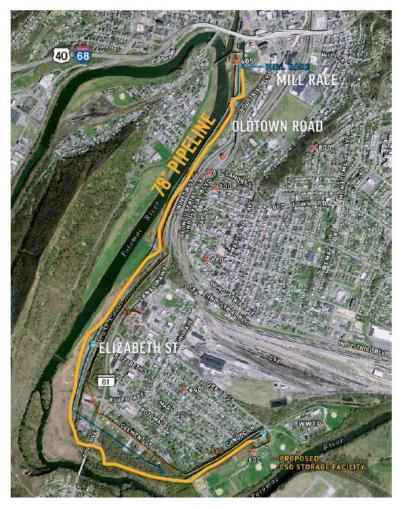


# **CSO Storage Facility – Construction Progress**





**Projected Completion Date: 09/2019** 


Cost: \$31 Million



## 78-inch from Mill Race

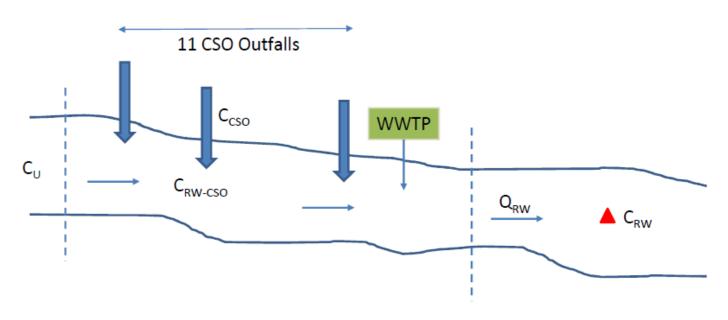
- 14,000 LF OF 78-inch pipeline
- Capture 3 largest remaining overflows (Mill Race, Oldtown Road, Elizabeth Street)
- In-line storage of up to 2.5 MG
- Maximizing storage at 5 MG facility and subsequent treatment





Projected Completion Date: 10/2021 Estimated Cost: \$28 Million




# **Presumption Approach (Storage Facility)**

# Projected Reduction of CSO Events

| YEAR | Numbe | r of Ove<br>WWTP | rflows at  | Number of Overflows at WWTP with CSO Storage |    |  |  |  |
|------|-------|------------------|------------|----------------------------------------------|----|--|--|--|
| 2005 |       | 15               |            |                                              | 1  |  |  |  |
| 2006 |       | 19               |            |                                              | 0  |  |  |  |
| 2007 |       | 16               |            |                                              | 0  |  |  |  |
| 2008 |       | 23               |            |                                              | 1  |  |  |  |
| 2009 | 337   | 19               |            |                                              | 3  |  |  |  |
| 2010 | æ     | 27               | 86% Reduc  | tion in #                                    | 5  |  |  |  |
| 2011 |       | 27               | of Occurre |                                              | 8  |  |  |  |
| 2012 |       | 9                |            |                                              | 2  |  |  |  |
| 2013 |       | 27               |            |                                              | 3  |  |  |  |
| 2014 |       | 21               |            |                                              | 6  |  |  |  |
| 2015 |       | 24               |            |                                              | 3  |  |  |  |
| 2016 |       | 22               |            |                                              | 3  |  |  |  |
| 2017 |       | 30               |            |                                              | 1  |  |  |  |
| 2018 |       | 58               |            |                                              | 11 |  |  |  |



### **Demonstration Approach – Cumberland CSO Reduction (1)**



C<sub>u</sub> = background (upstream) bacteria concentration (non-CSO) (CFU/100mL)

 $C_{CSO}$  = bacteria concentration in CSO discharge (CFU/100mL)

 $Q_{RW}$  = LNB Potomac stream flow (cfs)

 $C_{RW}$  = bacteria concentration in receiving water (LNB Potomac River)

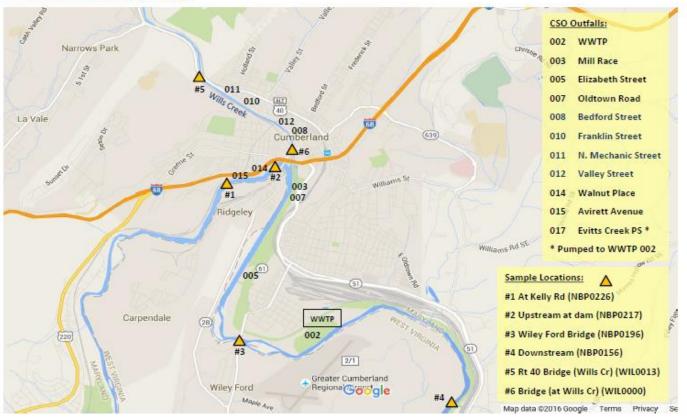


## **Demonstration Approach – Cumberland CSO Reduction (2)**

- For days <u>with</u> recorded CSO events:
  - Calculate total daily CSO bacteria load (CFU/day):
    - CSO bacteria concentration (2x10<sup>6</sup> CFU/100mL)\*
    - · CSO total volume (MG)
  - Calculate bacteria concentration in River based on stream flow:

Dilution mass-balance: 
$$C_{RW} = \begin{bmatrix} C_{CSO} * V_{CSO} \\ V_{RW} \end{bmatrix}$$

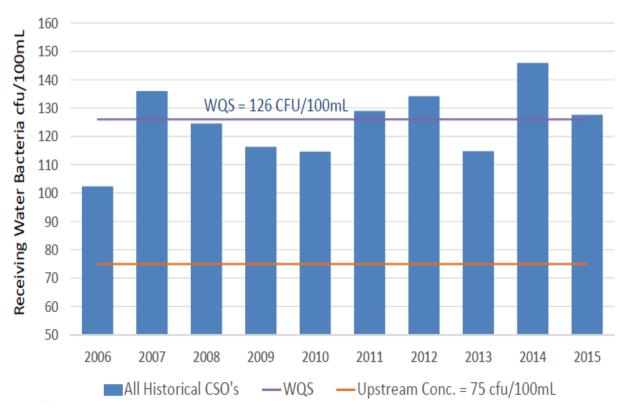
- For days without CSO events ("dry weather"):
  - Background bacteria concentration in River (C<sub>u</sub>)
- · Calculate monthly geometric mean and compare to WQS


Recorded CSO volumes/duration (2005 - 2015) (City)

- CSO sampling/characteristics (2009 / 2015) (City)
- Stream bacteria sampling (1999 2003) (DNR Stations)
- Stream discharge data (2000 2015) (NBP USGS)
- \* Assumption based on CSO sample data and literature values



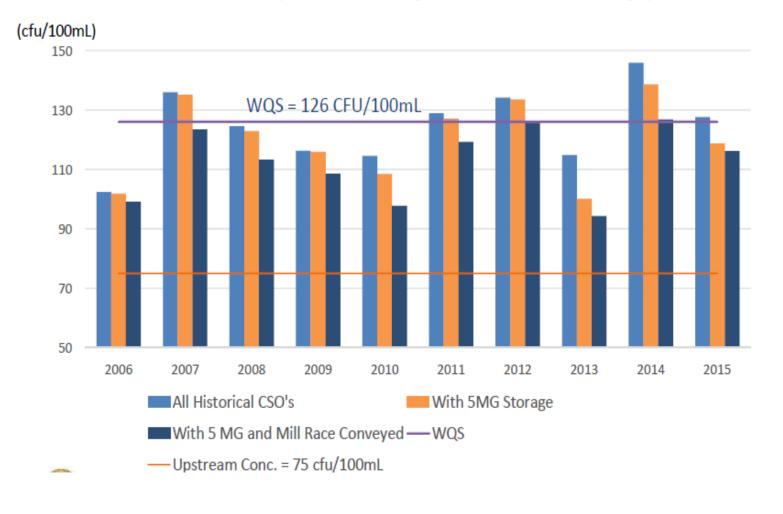
#### City of Cumberland CSO Program - Bacteria Sample Locations at the LNB Potomac River and Wills Creek


#### △ Bacteria sampling locations





## **Demonstration Approach – Cumberland CSO Reduction (3)**








## **Demonstration Approach – Cumberland CSO Reduction** (4)

Beach Season (May 1 - Sept 30) downstream Water Quality w/ CSO Conveyance and Storage at WWTP (5 MG Storage)



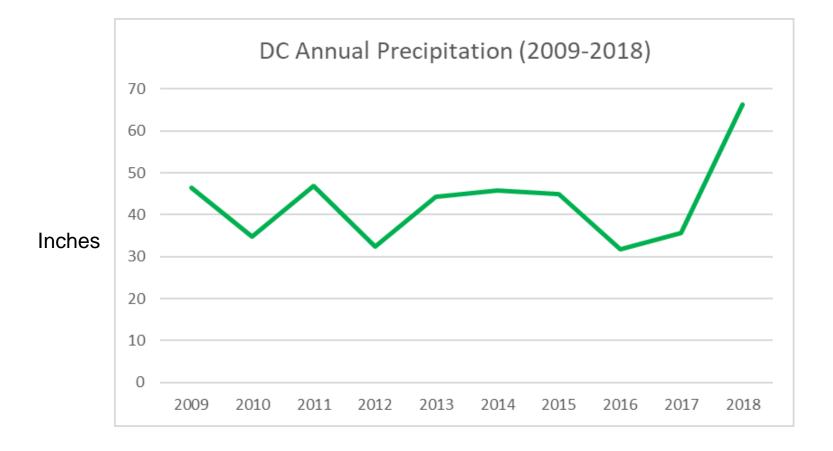


# Questions?





# **Contact Information**


# Yen-Der Cheng, Chief

Municipal Surface Discharge Permits Division Wastewater Permits Program Maryland Department of the Environment

Email: yen-der.cheng@maryland.gov

Phone: 410-537-3363 Fax: 410-537-3163

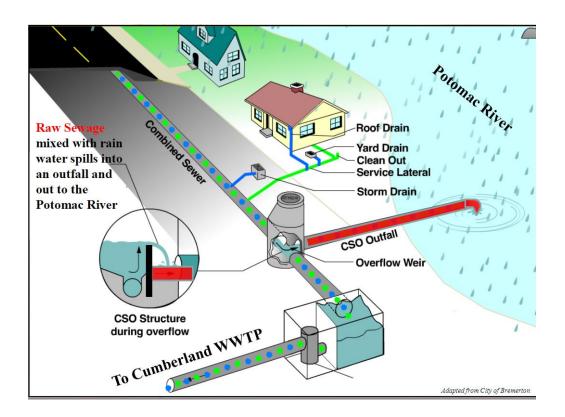




# **CSO Effluent Data**

| Pollutant        | Median Concentration* |
|------------------|-----------------------|
| BOD              | 48                    |
| TSS (mg/L)       | 58                    |
| TN (mg/L)        | 6.2                   |
| TP (mg/L)        | 1.3                   |
| E.Coli (#/100ml) | > 2400                |




<sup>\*</sup> Based on quarterly data (2012 -2016) reported by Allegany County, Frostburg and LaVale

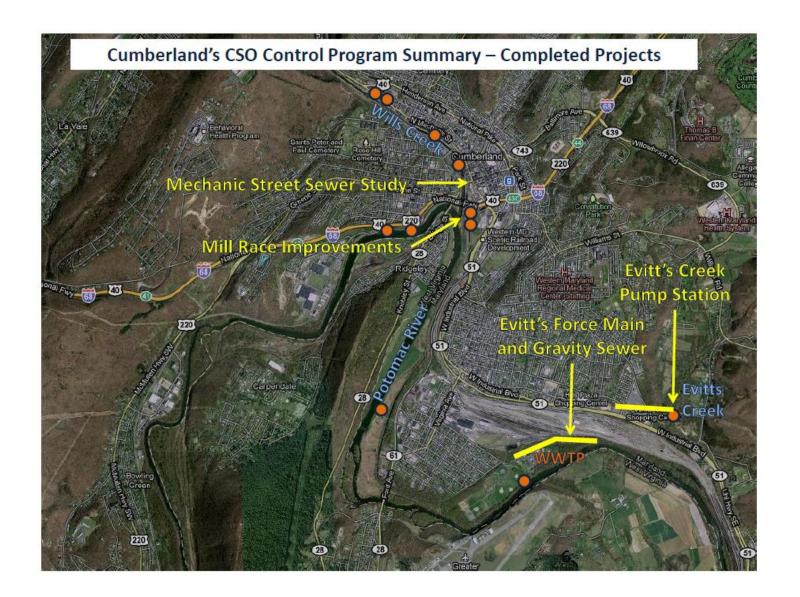
# **Cumberland WWTP Influent Data**

| Pollutant  | Med. Conc.<br>(non-CSO day)* | Med. Conc.<br>(CSO day)* |  |  |  |  |  |
|------------|------------------------------|--------------------------|--|--|--|--|--|
| BOD (mg/L) | 108                          | 31                       |  |  |  |  |  |
| TSS (mg/L) | 134                          | 41                       |  |  |  |  |  |
| TN (mg/L)  | 13                           | 8                        |  |  |  |  |  |
| TP (mg/L)  | 4.6                          | 1.8                      |  |  |  |  |  |



<sup>\*</sup> Based on 2018-2019 data collected by Cumberland WWTP




# Determination of CSS Separation – Dye Test

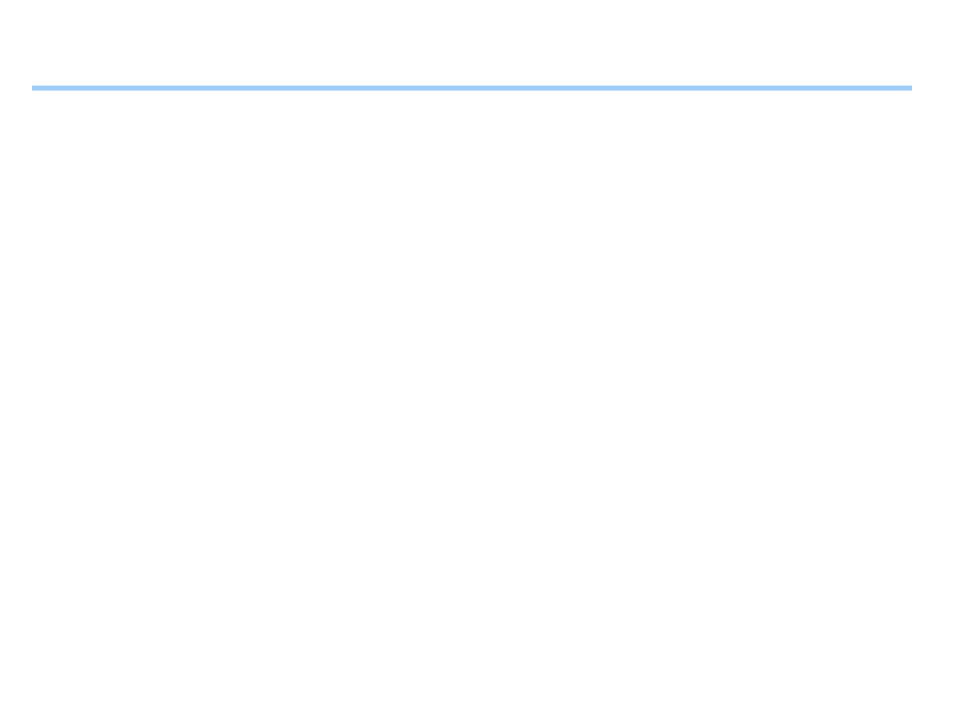













# **Potomac River LNB WQ Impairment Listing**

- Low pH (1996 impairment listing EPA approved WQA),
- Cadmium (1996 listing EPA approved WQA),
- Nutrients (P) (1996 listing EPA approved WQA in 2012),
- Sediment (TSS) (1996 listing EPA approved WQA in 2012),
- Methyl Mercury (2002 listing),
- Fecal bacteria (2002 listing)
- placed in Category 3 (2008) "waters with insufficient information to determine if water quality standards are attained").
- Impacts to biological communities (2002 listing refined to 1st to 4th order streams Biological Stressor Identification Analysis (BSID) submitted in 2013 No biological stressors were identified).

#### Washington DC Precipitation

| YEAR  | <u>JAN</u> | FEB  | MAR    | <u>APR</u> | MAY         | JUN   | JUL      | <u>AUG</u> | SEP   | <u>OCT</u> | NOV  | DEC  | ANNUAL  | WINTER              | SPRING   | SUMMER    | <u>AUTUMN</u> | 1ST HALF | 2ND HALF |           |
|-------|------------|------|--------|------------|-------------|-------|----------|------------|-------|------------|------|------|---------|---------------------|----------|-----------|---------------|----------|----------|-----------|
| 1998  | 5.43       | 5.23 | 5.40   | 3.96       | 4.05        | 4.42  | 1.79     | 0.59       | 1.83  | 0.59       | 0.91 | 1.74 | 35.94   | 12.40               | 13.41    | 6.80      | 3.33          | 28.49    | 7.45     |           |
| 1999  | 5.42       | 2.54 | 3.87   | 2.09       | 1.28        | 2.26  | 1.01     | 5.02       | 10.27 | 2.16       | 1.82 | 2.49 | 40.23   | 9.70                | 7.24     | 8.29      | 14.25         | 17.46    | 22.77    |           |
| 2000  | 3.66       | 2.06 | 3.98   | 5.13       | 3.08        | 4.93  | 5.51     | 3.77       | 4.91  | 0.02       | 1.60 | 2.01 | 40.66   | 8.21                | 12.19    | 14.21     | 6.53          | 22.84    | 17.82    |           |
|       |            |      |        |            |             |       |          |            |       |            |      |      |         |                     |          |           |               |          |          |           |
| 2001  | 2.22       | 1.83 | 3.88   | 1.68       | 3.71        | 4.69  | 4.78     | 2.98       | 1.41  | 0.69       | 0.55 | 1.53 | 29.95   | 6.06                | 9.27     | 12.45     | 2.65          | 18.01    | 11.94    |           |
| 2002  | 1.32       | 0.47 | 3.37   | 3.47       | 2.17        | 3.81  | 2.20     | 1.63       | 2.10  | 5.00       | 4.34 | 4.45 | 34.33   | 3.32                | 9.01     | 7.64      | 11.44         | 14.61    | 19.72    |           |
| 2003  | 2.41       | 6.98 | 4.20   | 2.55       | 7.06        | 7.87  | 5.76     | 4.65       | 6.87  | 3.93       | 4.23 | 4.32 | 60.83   | 13.84               | 13.81    | 18.28     | 15.03         | 31.07    | 29.76    |           |
| 2004  | 1.35       | 2.28 | 2.09   | 3.84       | 2.98        | 4.60  | 6.98     | 5.09       | 3.99  | 1.74       | 4.50 | 3.05 | 42.49   | 7.95                | 8.91     | 16.67     | 10.23         | 17.14    | 25.35    |           |
| 2005  | 3.31       | 1.63 | 4.46   | 4.33       | 4.61        | 2.87  | 6.06     | 2.33       | 0.11  | 9.41       | 1.92 | 3.34 | 44.38   | 7.99                | 13.40    | 11.26     | 11.44         | 21.21    | 23.17    |           |
|       |            |      |        |            |             |       |          |            |       |            |      |      |         |                     |          |           |               |          |          |           |
| 2006  | 3.25       | 2.46 | 0.05   | 3.10       | 2.21        | 14.02 | 3.56     | 1.03       | 6.31  | 5.06       | 5.16 | 1.56 | 47.77   | 9.05                | 5.36     | 18.61     | 16.53         | 25.09    | 22.68    |           |
| 2007  | 2.46       | 2.22 | 3.19   | 4.17       | 1.75        | 1.38  | 2.40     | 3.47       | 0.60  | 6.55       | 1.46 | 3.28 | 32.93   | 6.24                | 9.11     | 7.25      | 8.61          | 15.17    | 17.76    |           |
| 2008  | 1.37       | 4.17 | 2.80   | 4.92       | 10.66       | 4.80  | 3.60     | 1.23       | 6.41  | 1.13       | 2.43 | 2.97 | 46.49   | 8.82                | 18.38    | 9.63      | 9.97          | 28.72    | 17.77    |           |
| 2009  | 2.68       | 0.35 | 1.97   | 4.22       | 8.05        | 5.86  | 1.07     | 2.46       | 3.31  | 5.71       | 4.43 | 6.79 | 46.90   | 6.00                | 14.24    | 9.39      | 13.45         | 23.13    | 23.77    |           |
| 2010  | 1.56       | 2.72 | 3.55   | 1.50       | 2.40        | 1.87  | 5.17     | 2.59       | 6.02  | 3.40       | 2.22 | 1.78 | 34.78   | 11.07               | 7.45     | 9.63      | 11.64         | 13.60    | 21.18    |           |
|       |            |      |        |            |             |       |          |            |       |            |      |      |         |                     |          |           |               |          |          |           |
| 2011  | 2.25       | 2.12 | 4.40   | 3.20       | 1.70        | 1.68  | 3.03     | 8.92       | 8.84  | 3.91       | 1.94 | 4.90 | 46.89   | 6.15                | 9.30     | 13.63     | 14.69         | 15.35    | 31.54    |           |
| 2012  | 2.19       | 2.33 | 1.02   | 1.92       | 3.28        | 2.38  | 2.81     | 2.78       | 4.29  | 5.82       | 0.60 | 3.03 | 32.45   | 9.42                | 6.22     | 7.97      | 10.71         | 13.12    | 19.33    |           |
| 2013  | 2.53       | 1.67 | 2.80   | 2.76       | 2.82        | 9.97  | 4.43     | 1.34       | 1.22  | 6.25       | 2.92 | 5.53 | 44.24   | 7.23                | 8.38     | 15.74     | 10.39         | 22.55    | 21.69    |           |
| 2014  | 2.58       | 4.02 | 4.26   | 6.47       | 4.96        | 4.68  | 4.68     | 3.39       | 1.11  | 3.49       | 2.64 | 3.50 | 45.78   | 12.13               | 15.69    | 12.75     | 7.24          | 26.97    | 18.81    |           |
| 2015  | 3.73       | 1.68 | 4.04   | 3.41       | 1.92        | 11.94 | 5.01     | 1.16       | 2.15  | 3.04       | 2.10 | 4.84 | 45.02   | 8.91                | 9.37     | 18.11     | 7.29          | 26,72    | 18.30    |           |
|       |            |      |        |            |             |       |          |            |       |            |      |      |         |                     |          |           |               |          |          |           |
| 2016  | 2.68       | 3.79 | 1.16   | 2.05       | 5.65        | 3.68  | 3.13     | 2.79       | 2.50  | 0.90       | 0.76 | 2.61 | 31.70   | 11.31               | 8.86     | 9.60      | 4.16          | 19.01    | 12.69    |           |
| 2017  | 2.75       | 0.68 | 3.19   | 2.62       | 5.55        | 1.13  | 9.15     | 4.58       | 1.43  | 2.02       | 2.00 | 0.50 | 35.60   | 3.43                | 11.36    | 14.86     | 5.45          | 15.92    | 19.68    |           |
| 2018  | 0.94       | 4.79 | 1.92   | 3.59       | 8.73        | 5.21  | 9.73     | 5.19       | 9.73  | 3.06       | 7.57 | 5.82 | 66.28   | 8.34                | 14.24    | 20.13     | 20.36         | 25.18    | 41.10    |           |
| 2019  | 3.30       | 3.52 | 4.00   | 2.24       | 4.97        | 4.27  | 6.49     |            |       |            |      |      | 28.79   | 7.32                | 11.21    | 10.76     | 0.00          | 22.30    | 6.49     |           |
|       | 2.00       |      |        |            |             |       | 240      |            |       |            |      |      |         |                     |          |           |               |          |          | 1981-2010 |
| NORM  | 2.81       | 2.62 | 3.48   | 3.06       | 3.99        | 3.78  | 3.73     | 2.93       | 3.72  | 3.40       | 3.17 | 3.05 | 39.74   | 8.48                | 10.53    | 10.44     | 10.29         | 19.74    | 20.00    | 2010      |
| orum  | 2.01       | 2.02 | 5.40   | 0.00       | 5.00        | 5.70  | 5.70     | 2.00       | J.72  | 5.40       | 5.11 | 5.00 | 55.14   | 5.40                |          | 44        |               | 10.14    | 20.00    |           |
| YEAR  | JAN        | FEB  | MAR    | APR        | MAY         | JUN   | JUL      | AUG        | SEP   | ОСТ        | NOV  | DEC  | ANNUAL  | WINTER              | SPRING   | SUMMER    | AUTUMN        | 1ST HALF | 2ND HALF |           |
| - LAN | O/ III     |      | intrat |            | in the same | 901   | <u> </u> | 20         | 1     | 5          | 100  |      | MINIOAL | THE PERSON NAMED IN | <u> </u> | OO MINIER | 70 TOMIN      | TOTTINE  | END HALL |           |

