
CO-MANAGING CECS AND NUTRIENTS FOR A MUCH HEALTHIER POTOMAC WATERSHED

2012 – 2025: Where we've been, where we are, and where to go?

Collaborators:

Erik Rosenfeldt, Hazen and Sawyer Sujay Kaushal and Shuiwang Duan, University of Maryland Adil Godrej, Virginia Tech Sudhir Murthy, NEWhub Corp. Luke Iwanowicz, United States Geological Survey Diana Aga, University of Buffalo

Presentation Overview

- Brief History of the Research Program
 - A Unique Collaboration
 - Program Drivers
- Overview of the Approach
- Project 1: Assessing Relative Source Contributions and Impacts of BMPs on Nutrients and EDCs.
- Project 2: EPA STAR- Improving Reuse for a Healthier Potomac
- Other Things Going on in the Potomac Watershed...

A Unique Collaboration

Sudhir Murthy, Ph.D., P.E., BCEE NEWhub Corp.

Erik Rosenfeldt, Ph.D., P.E. Hazen and Sawyer

Sujay Kaushal, Ph.D., U. of Maryland

Adil Godrej, Ph.D., Virginia Tech

Luke Iwanowicz, Ph.D., USGS

Diana Aga, Ph.D., U. of Buffalo

Shuiwang Duan, Ph.D., U. of Maryland

Project Driver: Intersex fish in Potomac Watersheds

Chesapeake Bay News Aug 09 2012 Intersex fish widespread in Potomac River basin

Health & Science

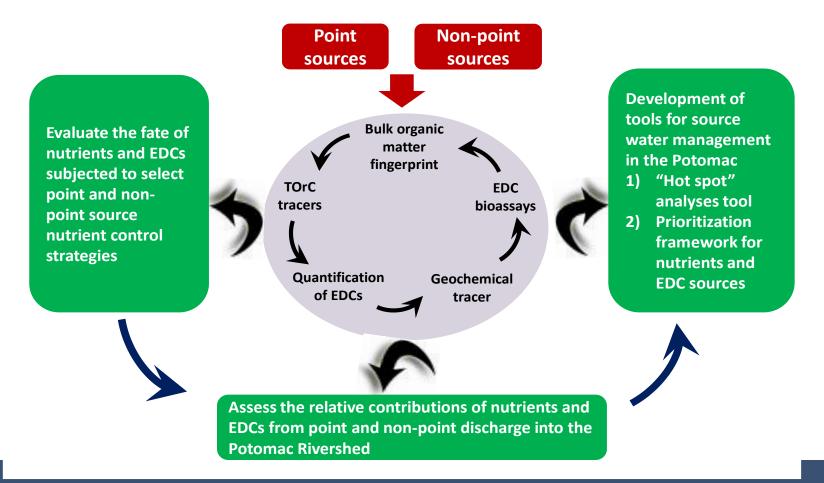
Bay's smallmouth bass under siege, report says

Intersex Fish Now in Three Pennsylvania River Basins Released: 6/30/2014 7:00:00 AM http://www.usgs.gov/newsroom

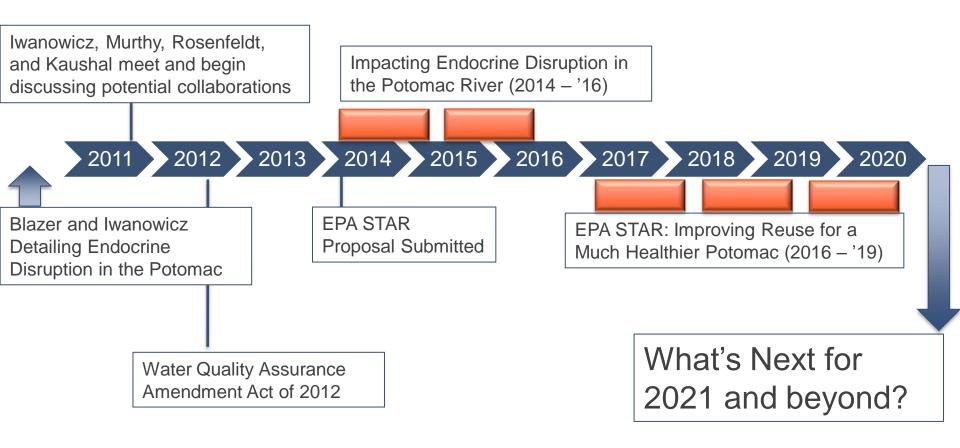
Impacts of Point and Non-point Sources

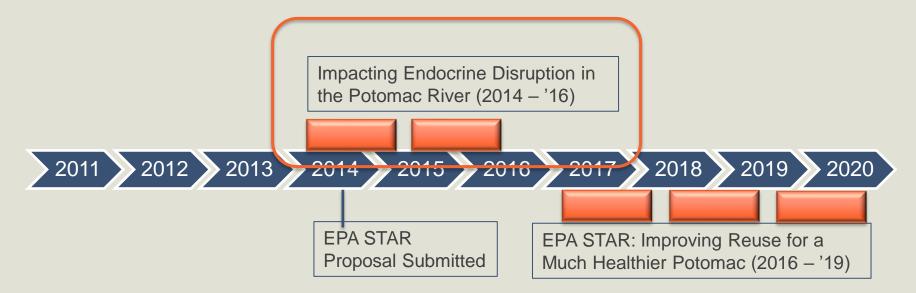
Comparing Land Use and Observed Intersex Activity

Land-use		revalence	Intersex severity	
	r ²	Р	rz	Р
Human population density	0.39	0.10	20.42	0.08
Number of WWTPs	0.22	0.~~~~	your and	GETTYSICRG 0.13
WWTP flow	0.32	02 makerewants	Ast i	0.02
Percent agricultural land	0.63	and a second	Con France	0.05
use	0.05	get at all	X: Page	0.05
Number of animal feeding	0.28	39-4 -51	Support of the second	0.03
operations	0.20	El In into	Acco	Watervoros. ne.
Number of poultry houses	0.27	Stor Star	0	0.05
Total number of animals	0.27 🦧	Sill & mancaning	0.4	0.06
Animal density	0.49	1230/		~ {03
Modified from Blazer et al., 2011		ANDESBORD	Urban	Manuel and
		380-	Agriculture Forest	380-20


Land Use in the Potomac Watershed

0 10 20 30 40 50 MILES 0 10 20 30 40 50 KILOMETERS


Water


Towards Managing Co-pollutants

Timeline of Research Projects

Project 1: Assessing Relative Source Contributions and Impacts of BMPs on Nutrients and EDCs.

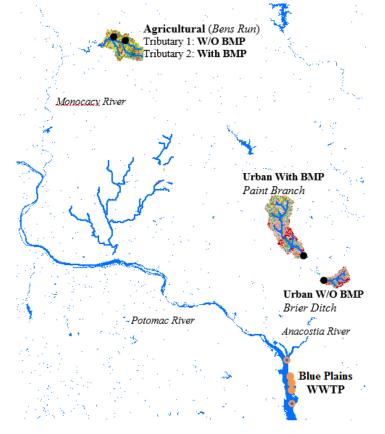
Project 1 Funding: Water Quality Assurance Amendment Act of 2012

Washington DC Council

Act Required:

- Establishment of a Water Quality Assurance Panel to monitor and identify emerging and unregulated contaminants in the District's drinking water* and wastewater discharge
- Mandated quarterly testing for unregulated contaminants in the District's drinking water* and wastewater effluent
- Provide recommendations to the Mayor an appropriate course of action for improving the reduction of unregulated contaminants and endocrine disruptor compounds at their source.

*Note: A quarterly sampling event required by the Environmental Protection Agency's Safe Drinking Water Act Unregulated Contaminant Monitoring Rule 3 (UCMR3) was performed throughout 2014 as a separate monitoring program from this study. Results can be found at <u>https://www.dcwater.com/emerging-compounds-testing</u>


Resulting Project: DC DOE funded / DC Water Managed

Objectives:

Evaluate upstream and downstream impacts from nutrient control, agriculture management, stormwater management and wastewater treatment strategies

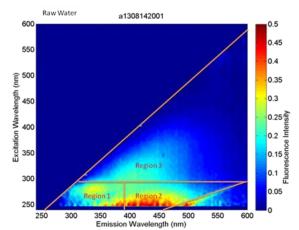
Evaluate impacts of EEDC in receiving waters attributed to point versus non-point sources

Question: What can you do with \$267k?

Methods – Chemical and WQ Endpoints

30

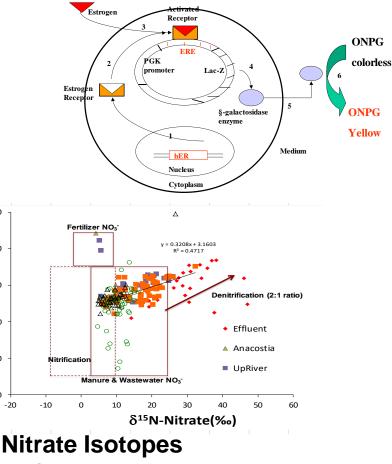
20


 δ^{18}_{0} O-Nitrate($\%_{0}$)

-20

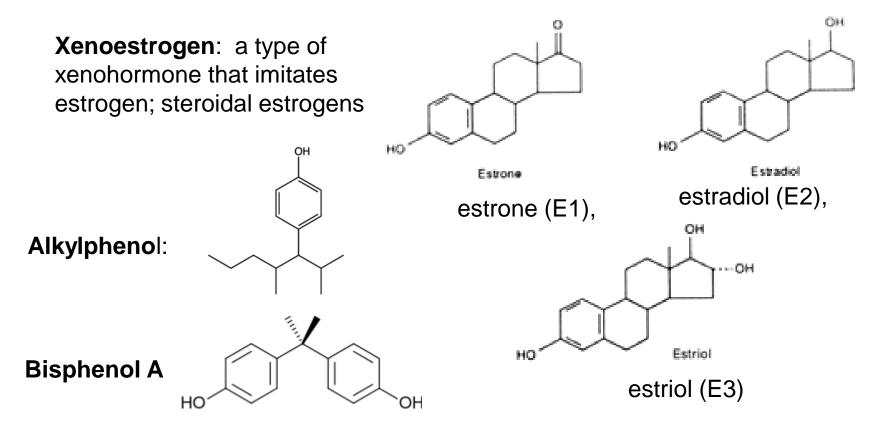
Analytical Detection

 Hormones and metabolites

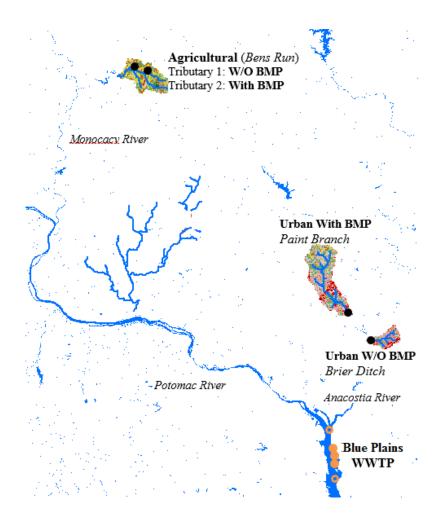


Advanced NOM Characterization

• Fluorometry

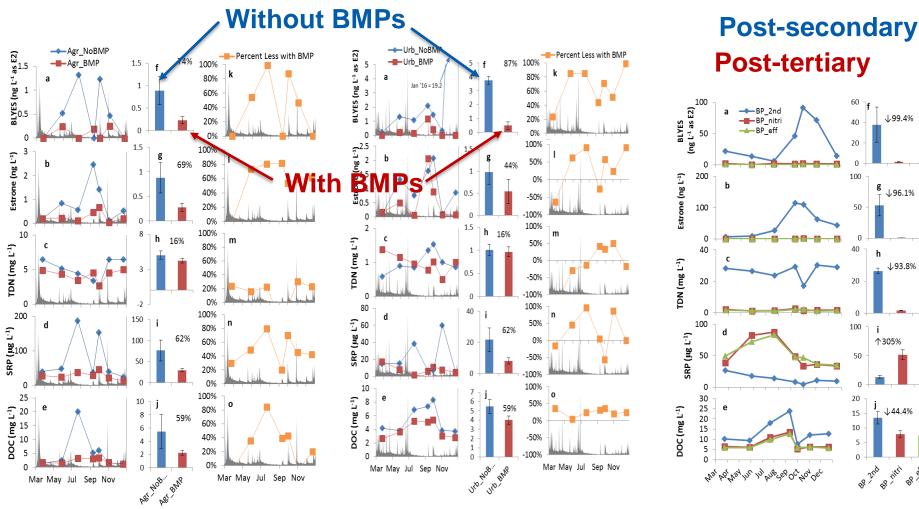

Bioactivity: Yeast Estrogen Assay

Source Tracking


Focus on Estrogen-based Endocrinedisrupting chemicals (EEDCs):

Substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction.

Sampling Locations


- Locations include:
 - "Paired" Watershed Samples
 - ► With and Without BMPs
 - ► Agriculture
 - Urban
 - WWTP (Blue Plains)
- Bimonthly Sampling Frequency for 1 year + 1 rain event

Objective 1: Assess the Performance of BMPs for EEDCs and nutrients

- Compare agriculture and urban stormwater nutrient control strategies via paired watershed analysis
- Assess EDC impacts on receiving water from point-source discharges (Blue Plains)
- Evaluate Blue Plains WWTP advanced nutrient control strategies for removal of EDCs.

Impact of BMPs on Nutrients and EDCs

Agriculture Non-point

Urban Non-point

Blue Plains

↓99.4%

40

20

Ω

100

50

n

40

20

100

50

20

15

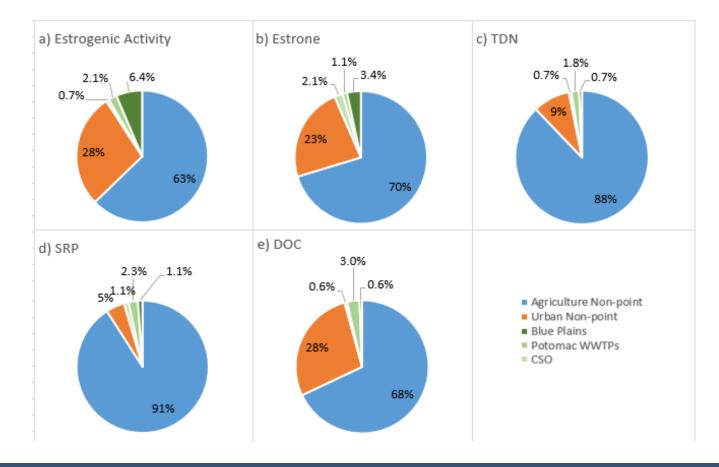
10

5

BR 2nd BR nitri

g ↓96.1%

h


个305%

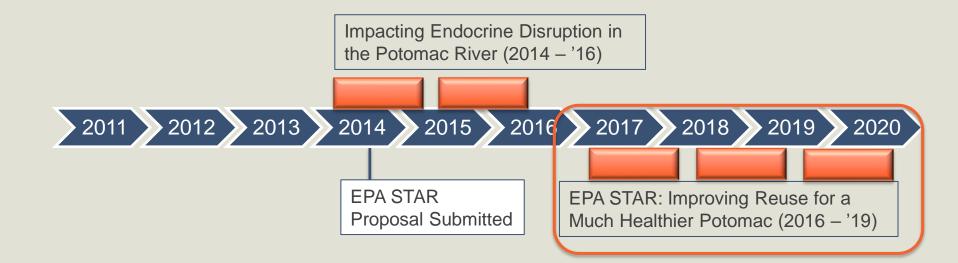
↓44.4%

↓93.8%

Objective 2: Assess the relative contribution of EDCs from WWTPs performing biological nutrient removal

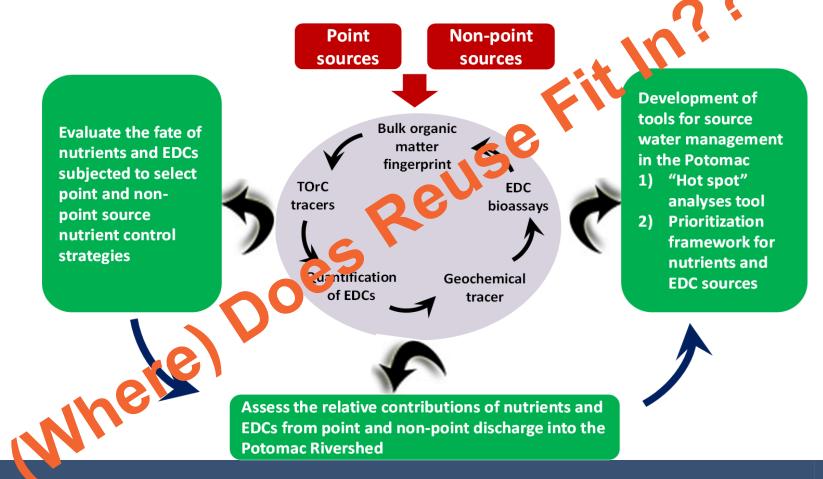
• Load contributions (mass/year) to the Potomac

Comparing Discharges with Background Levels and Other Sources


		E1 (ng/L)							
		Background Potomac	Blue Plains	WWTP 2	CSO	Agr. (No BMPs)	Agt. (BMPs)	Urb. (No BMPs)	Urb. (BMPs)
2)	Background Potomac		0.304	0.387	0.033	0.004	0.177	0.0005	0.181
as E2)	Blue Plains	0.246		0.411	0.211	0.055	0.314	0.022	0.231
Estrogenic Activity (ng/L a	WWTP 2	0.430	0.024		0.219	0.067	0.264	0.029	0.266
	CSO	0.121	0.187	0.241		0.401	0.197	0.438	0.219
	Agr. (No BMPs)	0.494	0.087	0.348	0.267		0.042	0.408	0.219
	Agr. (BMPs)	0.191	0.158	0.001	0.169	0.038		0.017	0.183
	Urb. (No BMPs)	0.004	0.107	0.121	0.207	0.128	0.102		0.147
	Urb. (BMPs)	0.495	0.309	0.205	0.208	0.193	0.144	0.112	

Conclusions: Project 1

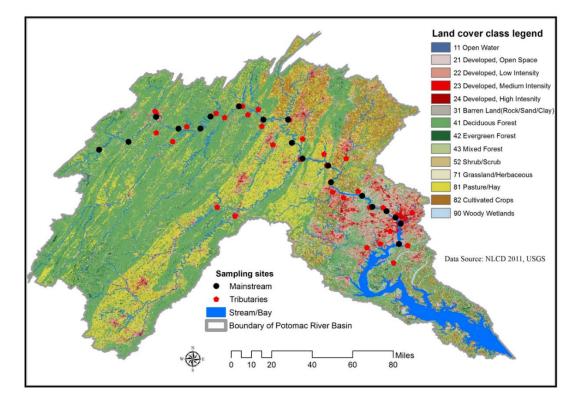
Upstream and Downstream Impacts on EEDCs from "best-in-class" nutrient management strategies


- Annual load analysis indicated non-point sources accounted for over 80% of EDC load to the Potomac
 - Blue Plains contributing less than 3%.
- BMPs showed significant reductions in EEDC inputs to the Potomac Aquifer from agriculture and urban runoff.
 - Agriculture: restricting livestock access to streams, planting grasses for stream shading and improving streambank stability.
 - Urban: maintaining shaded habitat, reducing impervious area, restoring stream habitat and riparian, and creating wetlands.
 - Blue Plains profile sampling revealed large reductions in EEDCs with advanced nitrogen control.

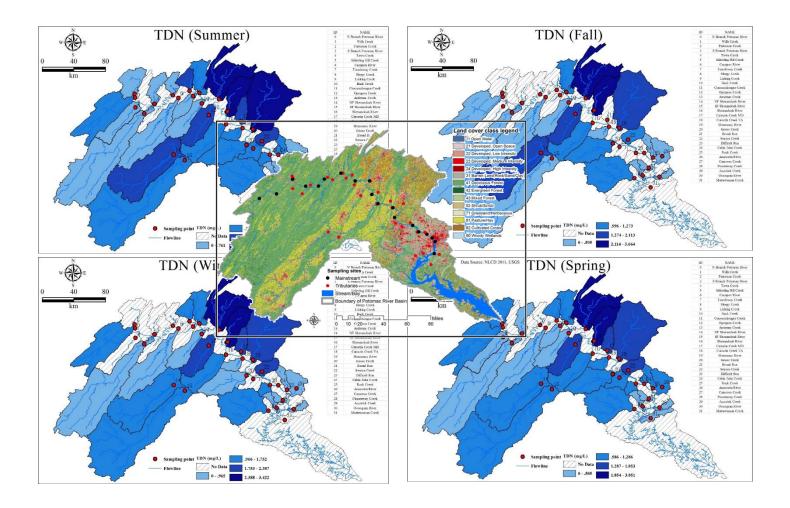
Project 2: EPA STAR-Improving Reuse for a Healthier Potomac

Extending the Approach

Towards Managing Co-pollutants

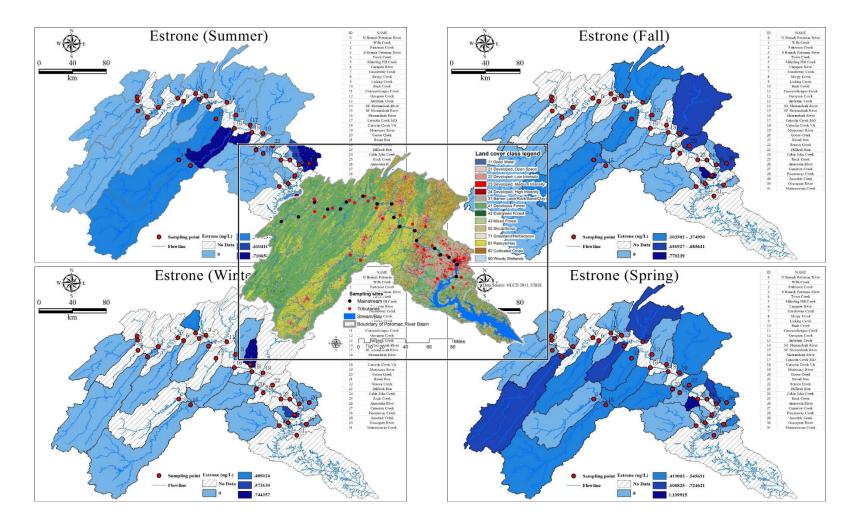

EPA STAR Project Study Objectives

4 year, \$1.2M study of EDCs in the Potomac

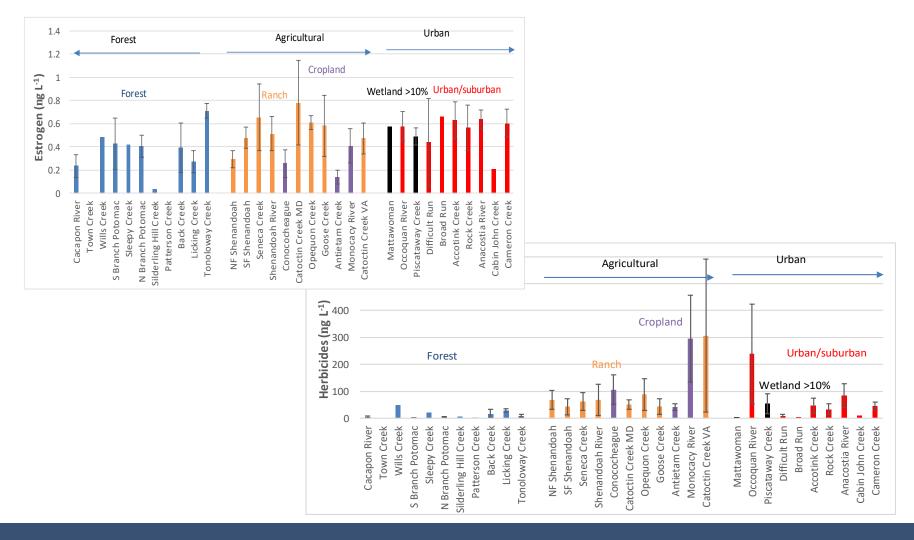

- 1) Use multiple analytical, biological activity, isotopic, and fluorescence tracers to identify and track spatial and temporal variability **hot spots of EDC and nutrient sources** at a large watershed scale,
- 2) Use case studies to examine **impacts of** advanced wastewater reclamation, stormwater reuse, and agricultural **best management practices** on source controls of **nutrient and EDCs**
- 3) Utilize a sustainable approach to quantitatively analyze the costs, impact, and **benefits of the reuse and management strategies** for achieving human and ecological health improvement.

Year 1 – "Hot Spot" and Source Contribution Analysis

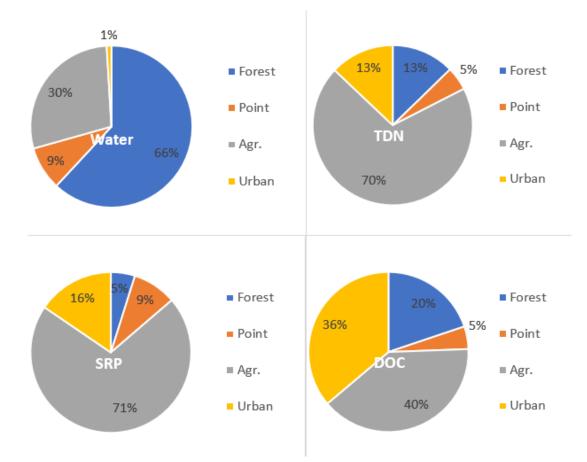
- Identify and track spatial variations in "hot spots" of EDCs, biological activity, and nutrients
- USGS and Chesapeake Bay Program sites
- Includes sites impacted by treated wastewaters, mineral fertilizers, animal manure, and atmospheric deposition



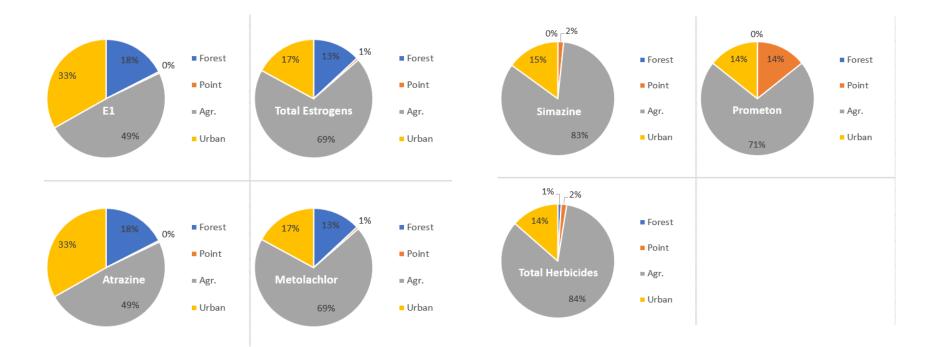
Year 1: Dissolved Nitrogen Hotspots (TDN)


23

Year 1 – Estrogen Hotspots (mainly Estrone)


24

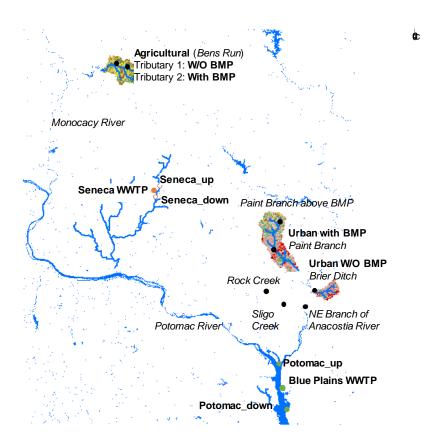
Defining Inputs of CECs According to Land Use


Major Findings from Year 1 Sampling

Conventional Pollutant Loads

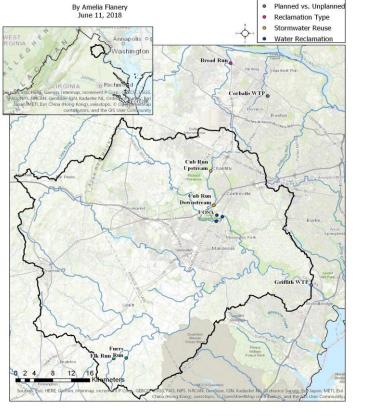
Major Findings from Year 1

CEC Loads



Agriculture Inputs are Big Contributors Point Sources are very small Contributors

Work plans for Year 2


- Year 1 Hot Spot Analysis
 - Identify and track spatial and temporal variations in "hot spots"
- Year 2a Impact of current management strategies (University of Maryland)
 - Use paired watershed studies to evaluate impacts and outcomes of current reclamation, reuse, harvesting, and management strategies on source controls of pollutants.
- Year 2b Impact of planned potable reuse (Virginia Tech)
 - Focused study on the comparative impact of planned potable reuse.
- Year 3 Cost-benefit analysis of EDC/Nutrient Comanagement strategies
 - Will the control framework change with inclusion of EDCs?

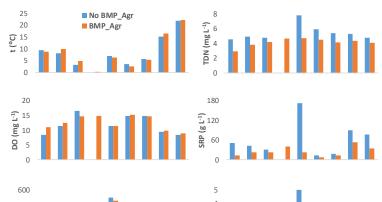
Year 2 Sampling Plan: Paired Watershed

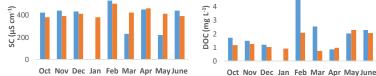
Agricultural runoff

Urban runoff

Virginia Tech Sampling Sites

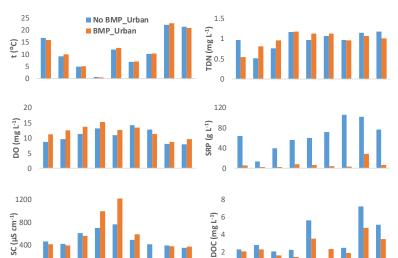
Site Category


Agricultural


Point Sources: Enhanced Nutrient Control Advanced Water Treatmetn

Agriculture BMPs

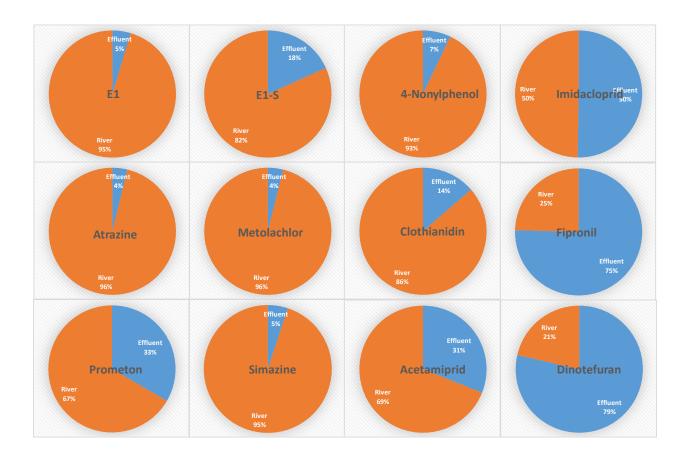
Fencing, Stream Restoration, Cover Crops



CEC Load	No BMP	BMP	Reduction (%)
E1 (g/km²/yr)	0.144	0.001	99
E1-S (g/km²/yr)	1.68	0.004	100
4-Nonylphenol (g/km²/yr)	22.30	2.85	87
Atrazine (g/km²/yr)	6.26	1.93	69
Metolachlor(g/km²/yr)	1.01	0.86	15
Prometon (g/km²/yr)	0.007	0.021	-213
Simazine (g/km²/yr)	0.078	0.076	2
Imidacloprid (g/km²/yr)	0.011	0.0002	98
Fipronil (g/km²/yr)	0.008	0.005	30
Dinotefuran (g/km²/yr)	BDL	BDL	
Acetamiprid (g/km²/yr)	0.023	0.021	9
Clothianidin (g/km²/yr)	0.374	0.656	-75

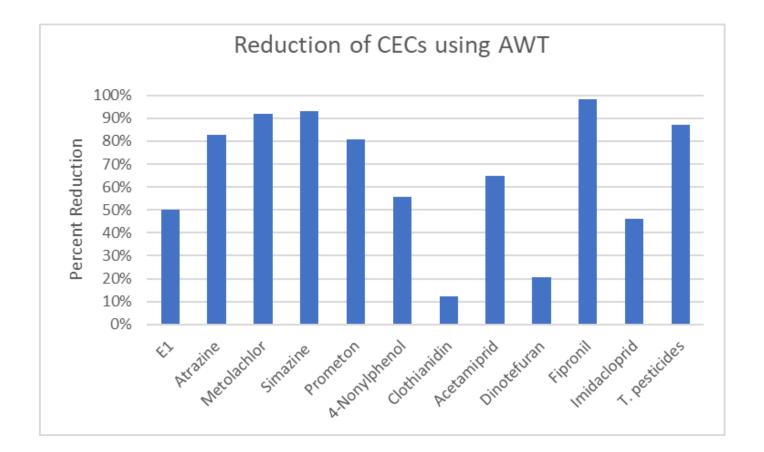
Urban Stormwater BMPs

Permeable hardscape, Urban stream restoration

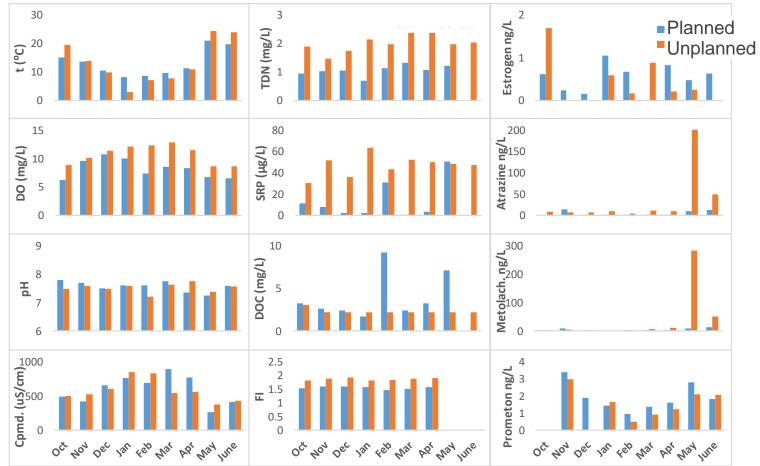

Oct Nov Dec Jan Feb Mar Apr MayJune

Oct Nov Dec Jan Feb Mar Apr MayJune

CEC Load	No BMP	BMP	Reduction (%)
E1 (g/km²/yr)	0.0011	0.0007	34
E1-S (g/km²/yr)	0.0020	0.0017	17
4-Nonylphenol (g/km²/yr)	4.996	1.114	78
Atrazine (g/km²/yr)	0.76	0.04	94
Metolachlor(g/km²/yr)	0.82	0.22	73
Prometon (g/km ² /yr)	0.051	0.214	-318
Simazine (g/km²/yr)	0.133	0.015	88
Imidacloprid (g/km²/yr)	0.217	0.129	41
Fipronil (g/km²/yr)	0.043	0.026	39
Dinotefuran (g/km²/yr)	0.014	0.019	-35
Acetamiprid (g/km²/yr)	0.019	0.013	33
Clothianidin (g/km²/yr)	0.023	0.018	24

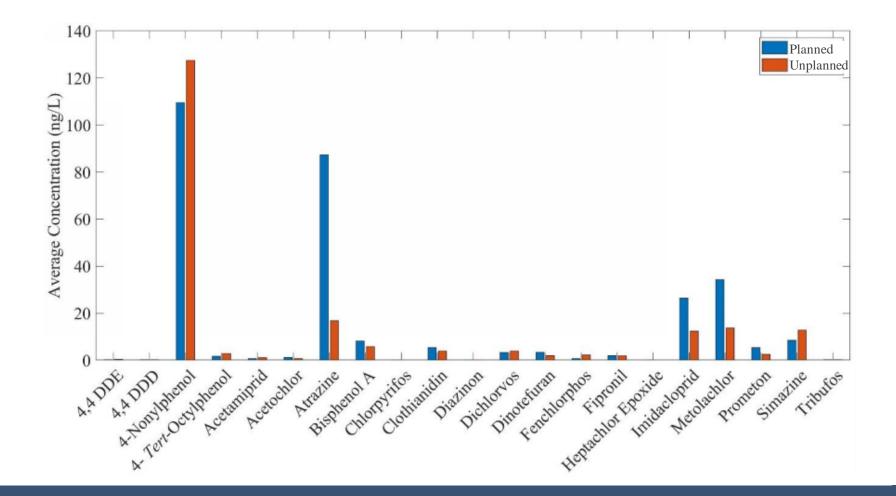

Point Source Impacts – Impact of WRFs

Enhanced Nutrient Control Technology

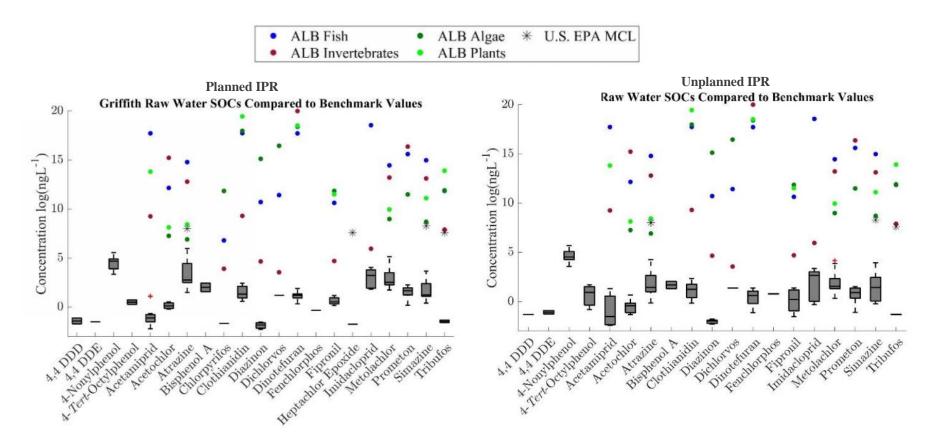


Point Source Impacts – Improvement with AWT

Planned Potable Reuse



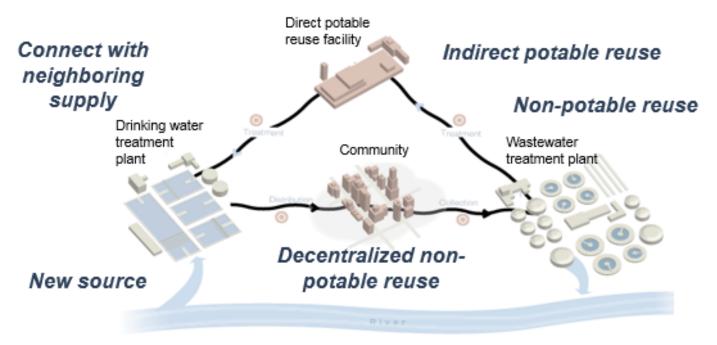
Impact of planned IPR



The stream representing with "planned" potable use had lower concentrations of SRP, DOC, atrazine and metolachlor than the stream representing "unplanned" potable use.

Planned vs. Unplanned IPR – CECs at the Water Plant Intake

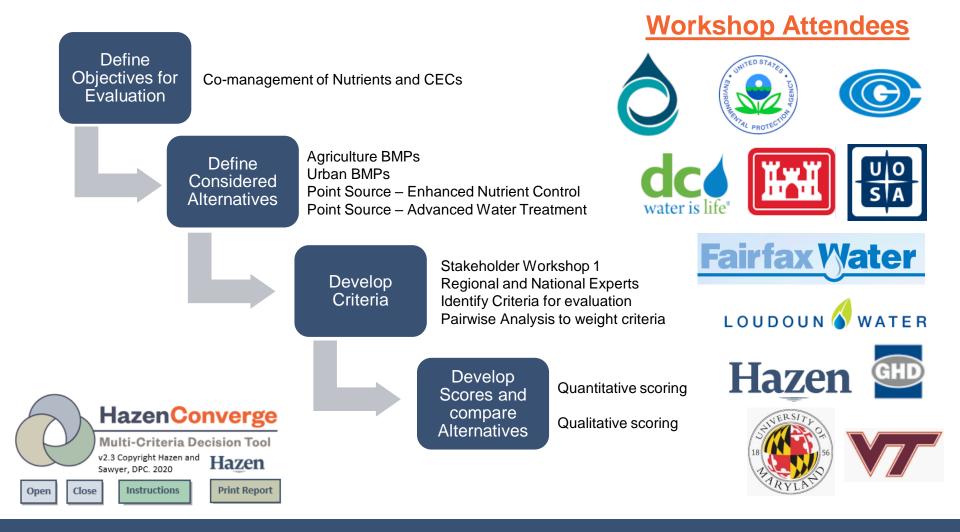
Some More context on CECs...


Every Detected CEC below Ecological or Human Health Levels of Concern

Year 3: CBA for co-managing EDCs and Nutrients

Multi-Criteria Decision Analysis Framework, based on TBL

• Leveraging: "A Framework and Tool for Triple Bottom Line Water Supply


Planning" (WRF Reuse 14-03)

Direct potable reuse

Comparing Alternatives with the "Right" Criteria

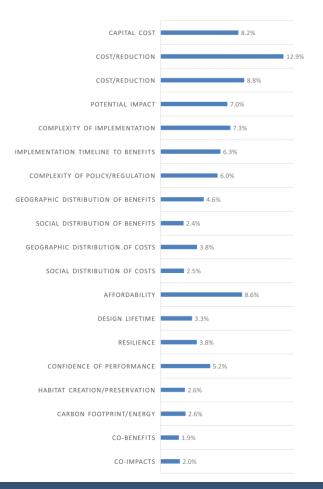
HazenConverge Facilitates Multi-Criteria Decision Analysis (MCDA)

Criteria Development Approach

Several approaches to Criteria Development

"Biased" Representation

Criterion	Group 1 -	Group 2 - Academic	Group 3 - Utility and
	Institutional and	research and	Watershed
	policy	consulting	Management
1	Degree of	Performance	Cost
	effectiveness		
2	Consequences of	Cost	Ease of
	implementation		implementation
3	Co-benefits	Cost/reduction metric	Does a regulatory
			framework exist
4	Impacts on waste	Distribution of	Cost equity
	balance	improvements	
5	Air emissions	Aesthetics	Social justice
6	Consumption of	Recreation	Economic impact
	energy		
7	Incidental waste	Local economic	'Bang for your buck'
	streams	stimulus	
8	Political palatability	Ease of	Net benefits
		implementation	
9	Ease of	Ease of maintenance	Implementable
	implementation		
10	Regulatory/voluntary	Resilience to climate	Spatial footprint
	palatability	change	
11	Number of impacted	-	Carbon footprint
	stakeholders		
12	Degree of uncertainty		Energy needs,
	in info		demand
13			Bio-habitat
14			Environmental benefits
15			Effectiveness certainty
16			Operability
17			Incentives
18			Mandates


"Balanced" Representation

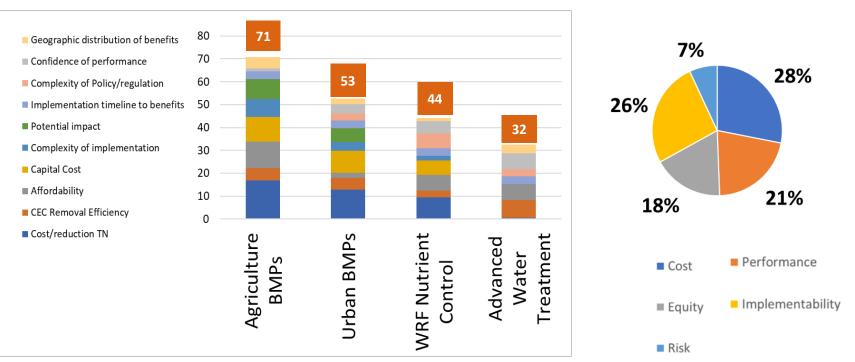
Criterion	Group 1	Group 2	Group 3
1	Cost effectiveness (life cycle)	Cost/reduction (lifecycle unit)	Cost \$
2	Policy/regulatory drivers	Effectiveness	Cost effectiveness (\$/unit of removal or performance)
3	Ease of implementation	Cost distribution (regionally/socially)	Performance (#, acres, mg/L)
4	Resilience (climate change)	Benefit distribution (regionally/socially)	Implementable (H-M-L)
5	Equity	Certainty	Geographic distribution (H- M-L)
6	Economic impact	External impacts (resilience?)	Social impact distribution (justice) (H-M-L)
7		Carbon footprint	Co-benefits (composite effectiveness?)
8		Energy	Lifecycle – of solution (time), maintenance (\$), replacement (time/\$)
9		Future sustainability	Uncertainty of solution/performance (probability/error bar, box whisker, end members)
10		Habitat	Equity-fairness
11		Water quality	
12		Green alternative	
13		Ease of implementation	
14		Implementation timeline	
15		Would require enforcement	

Criteria Development Approach

Grouped and Filtered and ran "pairwise analysis" to determine final criteria

List of Ranked Criteria

Final Evaluation Criteria


	Criteria	Category	% Weighting
1	Cost/reduction TN	Cost	12.9%
2	CEC Reduction Efficiency	Performance	8.8%
3	Affordability	Equity	8.6%
4	Capital Cost	Cost	8.2%
5	Complexity of Implementation	Implementability	7.3%
6	Potential Impact	Performance	7.0%
7	Implementation Timeline to Benefits	Implementability	6.3%
8	Complexity of Policy/Regulation	Implementability	6.0%
9	Confidence of Performance	Risk	5.2%
10	Geographic Distribution of Benefits	Equity	4.6%

These 10 criteria account for 75% of the total weighting

And the winner is...

Scores were developed for each criteria, and weighted accordingly

Weighted Scores

A balanced evaluation

Implementing Agriculture BMPs are clearly the preferred option

Project 2 Summary

A truly comprehensive evaluation of sources and co-management opportunities for nutrients and CECs in the Potomac River Watershed

Agriculture Inputs of Nutrients and CECs dominated the watershed inputs

"Paired" Watershed analysis of BMP effectiveness indicated the following:

- Agriculture BMPs variable but effective for nutrient control and moderately effective for CEC control
- Urban BMPs variable and less effective for nutrient control and moderately effective for CEC control
- Point sources both very effective for nutrient control; ENR less effective for CEC control, AWT very effective for CEC control

MCDA indicated that Implementing Agricultural BMPs was the preferred option for cost-effective, equitable, high performing comanagement of nutrients and CECs in the Potomac Watershed

Some More Interesting Results Stemming from the Research

Expanding the Analytical Techniques

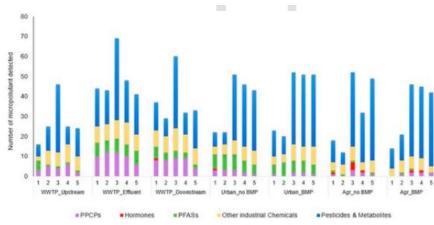
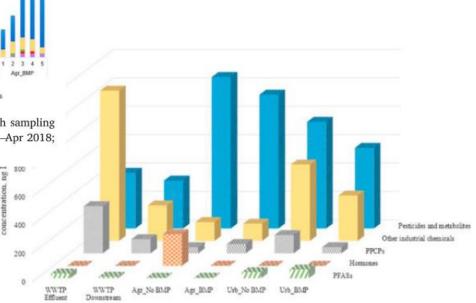
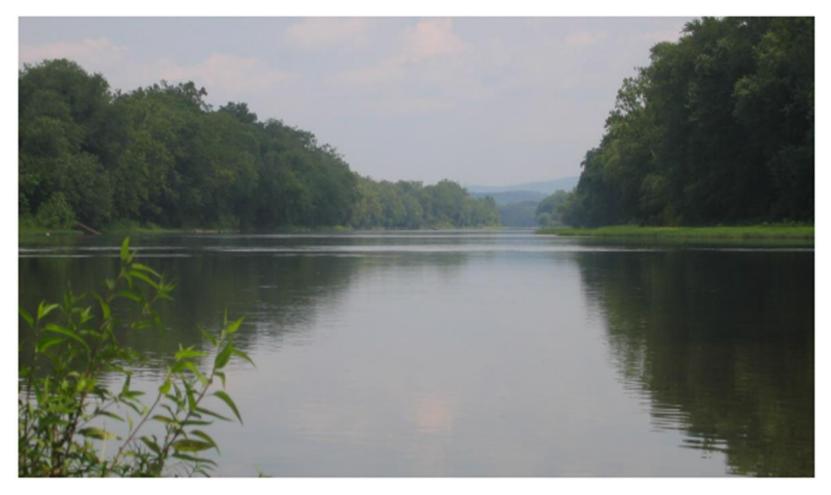




Fig. 4. Summary of the number and class of micropollutants detected at each sampling site from Oct 2017–June 2018 (1 –Oct 2017; 2 –Dec 2017; 3 –Feb 2018; 4 –Apr 2018; 5 –Jun 2018).

Fig. 5. Summary of the total concentration for each micropollutant class in the paired streams/sampling site studied (WWTP effluent vs. downstream; Agr without BMP vs. with BMPs installed; Urban without BMP vs. with BMPs installed). The total concentration for

Questions?

erosenfeldt@hazenandsawyer.com

To Download The Report (WaterRF Subscribers) https://www.waterrf.org/system/files/resource/2020-11/DRPT-4790.pdf

