APPLICATION OF THE GNOME OIL SPILL MODEL TO THE POTOMAC RIVER

Alimatou Seck
Sarah N. Ahmed
Cherie L. Schultz

Interstate Commission on the Potomac River Basin (ICPRB)

Potomac River Basin Drinking Water Source Protection Partnership
November 3, 2021
OPERATIONAL SPILL MODELING AT ICPRB

- 1D models
 - Emergency River Spill Model (ERSM) – ICPRB
 - IC Water – US Army/Leidos

- Advantages
 - Quick to run
 - Few data inputs
 - “1D” assumptions
 - Completely soluble contaminant
 - Complete vertical mixing
 - Complete lateral mixing

- Limitations
 - Constant flows

ICPRB’s current operational tools
2D SPILL MODEL OF THE POTOMAC RIVER

- Estimate arrival times of floating contaminants at downstream water supply intakes.
- Predict both the longitudinal and transverse movement of a contaminant plume.
- Consider two-dimensional flow patterns in the river.
 - Contaminant transport model (GNOME)
 → 2D steady and unsteady flow (CATS)
 → 2D unsteady flow (Delft3D, IRIC)
- Use bathymetric LiDAR data from Little Falls to Shepherdstown.
GNOME MODEL

- General NOAA Operational Modeling Environment
- Publicly available
- Predicts movement of oil on water bodies with varying winds, currents and other processes.
- Predicts chemical and physical changes (weathering) of oil on water surface.
- Study effects of uncertainty in current and wind observations and forecasts.
2D SPILL MODEL OF THE POTOMAC RIVER
CONTAMINANT TRANSPORT MODEL (GNOME)

- Medium-crude oil
- 100 barrels
- Constant flow

Constant Flow (baseline)

Variable Flow
UNSTEADY FLOW MODEL (DELFT3D/IRIC)

- Model Extent: Point of Rocks to Chain Bridge
- Model setup:
 - Resampled 30m DEM (LiDAR + NOAA NCEI)
 - Discharge boundary conditions at Point of Rock
 - Water level boundary condition below Little Falls
 - 3 inflows (Monocacy, Goose, Seneca)
RIVER FLOW: UNSTEADY FLOW MODEL (DELFT3D)

May to December 2019

Discharge (cfs)

- Modeled
- Observed
RIVER FLOW: IRIC-FASTMECH/DELFT3D

October – November 2019

Graph showing discharge (cfs) over time from 1-October to 10-November 2019, with observed, modeled (Delft3D), and modeled (Fastmech) data points.
October – November 2019
Short Section of River above Point of Rocks

RMSE = 0.213611
using Manning’s n = 0.04
and finer elevation data
1993 OIL SPILL EVENT

- Rupture of section of a pipeline owned and operated by the Colonial Pipeline Company
- 400,000 gallons of diesel fuel into Sugarland Run in Reston, VA
- GNOME model set up
 - Spill date: March 28, 1993
 - Model run time: 3 weeks
 - Spill location: confluence of Potomac River and Sugarland Run.
 - Spill amount: 35,000 gallons over three days
SUMMARY

- Constructed steady state and transient GNOME oil spill model for Potomac River.
- Flow models capture spatio-temporal variability of river flow and water velocities.
- Flow model run times vary with resolution and model type. Can be reduced using restart file and integrating flow model in LFFS.
- GNOME model was used to simulate 1993 oil spill model.
- New tool is an improvement over previously available tools.
FUTURE STEPS

- Enhance Potomac River models
 - Extend model domain up to Shepherdstown & Millville
 - Incorporate into CO-OP’s real-time Low Flow Forecast System (LFFS)
 - Test particle tracking capability of iRIC model
 - Refine grids
- Build 2D Occoquan & Patuxent reservoir spill models